

Collective Intelligence in Action

Collective Intelligence
in Action

SATNAM ALAG

M A N N I N G
Greenwich

(74° w. long.)

 To my dear sons, Ayush and Shray,
and my beautiful, loving, and intelligent wife, Alpana

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Development Editor: Jeff Bleiel
Manning Publications Co. Copyeditor: Benjamin Berg
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1933988312
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 13 12 11 10 09 08

www.manning.com

v

brief contents
PART 1 GATHERING DATA FOR INTELLIGENCE1

1 ■ Understanding collective intelligence 3

2 ■ Learning from user interactions 20

3 ■ Extracting intelligence from tags 50

4 ■ Extracting intelligence from content 82

5 ■ Searching the blogosphere 107

6 ■ Intelligent web crawling 145

PART 2 DERIVING INTELLIGENCE ..173

7 ■ Data mining: process, toolkits, and standards 175

8 ■ Building a text analysis toolkit 206

9 ■ Discovering patterns with clustering 240

10 ■ Making predictions 274

PART 3 APPLYING INTELLIGENCE IN YOUR APPLICATION.................... 307

11 ■ Intelligent search 309

12 ■ Building a recommendation engine 349

contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxiii

PART 1 GATHERING DATA FOR INTELLIGENCE...................... 1

1 Understanding collective intelligence 3
1.1 What is collective intelligence? 4
1.2 CI in web applications 6

Collective intelligence from the ground up: a sample
application 7 ■ Benefits of collective intelligence 9 ■ CI is the
core component of Web 2.0 10 ■ Harnessing CI to transform from
content-centric to user-centric applications 12

1.3 Classifying intelligence 14
Explicit intelligence 14 ■ Implicit intelligence 15 ■ Derived
intelligence 16

1.4 Summary 18
1.5 Resources 18
vii

CONTENTSviii
2 Learning from user interactions 20
2.1 Architecture for applying intelligence 21

Synchronous and asynchronous services 21 ■ Real-time
learning in an event-driven system 23 ■ Polling services for
non–event-driven systems 24 ■ Advantages and disadvantages
of event-based and non–event-based architectures 25

2.2 Basics of algorithms for applying CI 25
Users and items 26 ■ Representing user information 27
Content-based analysis and collaborative filtering 29
Representing intelligence from unstructured text 30
Computing similarities 31 ■ Types of datasets 32

2.3 Forms of user interaction 34
Rating and voting 35 ■ Emailing or forwarding a
link 36 ■ Bookmarking and saving 36 ■ Purchasing
items 37 ■ Click-stream 37 ■ Reviews 39

2.4 Converting user interaction into collective intelligence 41
Intelligence from ratings via an example 41 ■ Intelligence from
bookmarking, saving, purchasing Items, forwarding, click-stream,
and reviews 46

2.5 Summary 48
2.6 Resources 48

3 Extracting intelligence from tags 50
3.1 Introduction to tagging 51

Tag-related metadata for users and items 52 ■ Professionally
generated tags 52 ■ User-generated tags 53 ■ Machine-generated
tags 54 ■ Tips on tagging 55 ■ Why do users tag? 55

3.2 How to leverage tags 56
Building dynamic navigation 56 ■ Innovative uses of tag clouds 58
Targeted search 59 ■ Folksonomies and building a dictionary 60

3.3 Extracting intelligence from user tagging: an example 60
Items related to other items 61 ■ Items of interest for a
user 61 ■ Relevant users for an item 62

3.4 Scalable persistence architecture for tagging 62
Reviewing other approaches 63 ■ Recommended persistence
architecture 66

3.5 Building tag clouds 69
Persistence design for tag clouds 69 ■ Algorithm for building a tag
cloud 70 ■ Implementing a tag cloud 71 ■ Visualizing a tag
cloud 76

CONTENTS ix
3.6 Finding similar tags 79
3.7 Summary 80
3.8 Resources 81

4 Extracting intelligence from content 82
4.1 Content types and integration 83

Classifying content 83 ■ Architecture for integrating content 85

4.2 The main CI-related content types 86
Blogs 87 ■ Wikis 89 ■ Groups and message boards 91

4.3 Extracting intelligence step by step 93
Setting up the example 94 ■ Naïve analysis 95 ■ Removing
common words 98 ■ Stemming 99 ■ Detecting phrases 100

4.4 Simple and composite content types 102
4.5 Summary 103
4.6 Resources 104

5 Searching the blogosphere 107
5.1 Introducing the blogosphere 108

Leveraging the blogosphere 108 ■ RSS: the publishing
format 109 ■ Blog-tracking companies 111

5.2 Building a framework to search the blogosphere 111
The searcher 113 ■ The search parameters 113 ■ The query
results 114 ■ Handling the XML response 115 ■ Exception
handling 116

5.3 Implementing the base classes 116
Implementing the search parameters 117 ■ Implementing the result
objects 117 ■ Implementing the searcher 119 ■ Parsing XML
response 123 ■ Extending the framework 127

5.4 Integrating Technorati 128
Technorati search API overview 128 ■ Implementing classes for
integrating Technorati 130

5.5 Integrating Bloglines 135
Bloglines search API overview 135 ■ Implementing classes for
integrating Bloglines 136

5.6 Integrating providers using RSS 139
Generalizing the query parameters 139 ■ Generalizing the blog
searcher 140 ■ Building the RSS 2.0 XML parser 141

5.7 Summary 143
5.8 Resources 143

CONTENTSx
6 Intelligent web crawling 145
6.1 Introducing web crawling 146

Why crawl the Web? 146 ■ The crawling process 147
Intelligent crawling and focused crawling 149 ■ Deep
crawling 150 ■ Available crawlers 151

6.2 Building an intelligent crawler step by step 152
Implementing the core algorithm 152 ■ Being polite: following the
robots.txt file 156 ■ Retrieving the content 159 ■ Extracting
URLs 160 ■ Making the crawler intelligent 161 ■ Running the
crawler 162 ■ Extending the crawler 163

6.3 Scalable crawling with Nutch 164
Setting up Nutch 164 ■ Running the Nutch crawler 165 ■ Searching
with Nutch 168 ■ Apache Hadoop, MapReduce, and Dryad 169

6.4 Summary 171
6.5 Resources 171

PART 2 DERIVING INTELLIGENCE 173

7 Data mining: process, toolkits, and standards 175
7.1 Core concepts of data mining 176

Attributes 176 ■ Supervised and unsupervised learning 178
Key learning algorithms 178 ■ The mining process 181

7.2 Using an open source data mining framework: WEKA 182
Using the WEKA application: a step-by-step tutorial 183
Understanding the WEKA APIs 186 ■ Using the WEKA APIs
via an example 188

7.3 Standard data mining API: Java Data Mining (JDM) 193
JDM architecture 194 ■ Key JDM objects 195 ■ Representing the
dataset 196 ■ Learning models 197 ■ Algorithm settings 199
JDM tasks 199 ■ JDM connection 200 ■ Sample code for accessing
DME 202 ■ JDM models and PMML 204

7.4 Summary 204
7.5 Resources 205

8 Building a text analysis toolkit 206
8.1 Building the text analyzers 207

Leveraging Lucene 208 ■ Writing a stemmer analyzer 213 ■ Writing
a TokenFilter to inject synonyms and detect phrases 214 ■ Writing an
analyzer to inject synonyms and detect phrases 218 ■ Putting our
analyzers to work 218

CONTENTS xi
8.2 Building the text analysis infrastructure 221
Building the tag infrastructure 222 ■ Building the term vector
infrastructure 225 ■ Building the Text Analyzer class 231
Applying the text analysis infrastructure 234

8.3 Use cases for applying the framework 237
8.4 Summary 238
8.5 Resources 239

9 Discovering patterns with clustering 240
9.1 Clustering blog entries 241

Defining the text clustering infrastructure 242 ■ Retrieving blog
entries from Technorati 244 ■ Implementing the k-means
algorithms for text processing 247 ■ Implementing hierarchical
clustering algorithms for text processing 253 ■ Expectation
maximization and other examples of clustering high-dimension
sparse data 261

9.2 Leveraging WEKA for clustering 262
Creating the learning dataset 263 ■ Creating the
clusterer 265 ■ Evaluating the clustering results 266

9.3 Clustering using the JDM APIs 268
Key JDM clustering-related classes 268 ■ Clustering settings
using the JDM APIs 269 ■ Creating the clustering task using
the JDM APIs 271 ■ Executing the clustering task using the
JDM APIs 271 ■ Retrieving the clustering model using the
JDM APIs 272

9.4 Summary 272
9.5 Resources 273

10 Making predictions 274
10.1 Classification fundamentals 275

Learning decision trees by example 275 ■ Naïve Bayes’
classifier 281 ■ Belief networks 285

10.2 Classifying blog entries using WEKA APIs 287
Building the dataset for classifying blog entries 288 ■ Building the
classifier class 292

10.3 Regression fundamentals 294
Linear regression 295 ■ Multi-layer perceptron
(MLP) 297 ■ Radial basis functions (RBF) 298

10.4 Regression using WEKA 299

CONTENTSxii
10.5 Classification and regression using JDM 300
Key JDM supervised learning–related classes 300 ■ Supervised learning
settings using the JDM APIs 302 ■ Creating the classification task using
the JDM APIs 304 ■ Executing the classification task using the JDM
APIs 304 ■ Retrieving the classification model using the JDM APIs 305
Retrieving the classification model using the JDM APIs 305

10.6 Summary 306
10.7 Resources 306

PART 3 APPLYING INTELLIGENCE IN YOUR APPLICATION307

11 Intelligent search 309
11.1 Search fundamentals 310

Search architecture 310 ■ Core Lucene classes 311 ■ Basic
indexing and searching via example 313

11.2 Indexing with Lucene 320
Understanding the index format 320 ■ Modifying the
index 321 ■ Incremental indexing 322 ■ Accessing the term
frequency vector 324 ■ Optimizing indexing performance 325

11.3 Searching with Lucene 327
Understanding Lucene scoring 327 ■ Querying Lucene 330
Sorting search results 331 ■ Querying on multiple fields 333
Filtering 334 ■ Searching multiple indexes 335 ■ Using a
HitCollector 335 ■ Optimizing search performance 338

11.4 Useful tools and frameworks 339
Luke 339 ■ Solr 339 ■ Compass 341 ■ Hibernate search 341

11.5 Approaches to intelligent search 341
Augmenting search with classifiers and predictors 342 ■ Clustering search
results 342 ■ Personalizing results for the user 344 ■ Community-
based search 344 ■ Linguistic-based search 345 ■ Data search 345

11.6 Summary 347
11.7 Resources 347

12 Building a recommendation engine 349
12.1 Recommendation engine fundamentals 350

Introducing the recommendation engine 351 ■ Item-based and
user-based analysis 352 ■ Computing similarity using content-
based and collaborative techniques 353 ■ Comparison of content-
based and collaborative techniques 354

CONTENTS xiii
12.2 Content-based analysis 355
Finding similar items using a search engine (Lucene) 355
Building a content-based recommendation engine 359 ■ Related items
for document clusters 362 ■ Personalizing content for a user 362

12.3 Collaborative filtering 363
k-nearest neighbor 363 ■ Packages for implementing collaborative
filtering 365 ■ Dimensionality reduction with latent semantic
indexing 369 ■ Implementing dimensionality
reduction 370 ■ Probabilistic model–based approach 373

12.4 Real-world solutions 373
Amazon item-to-item recommendation 374 ■ Google News
personalization 377 ■ Netflix and the BellKor Solution for the
Netflix Prize 381

12.5 Summary 385
12.6 Resources 386

index 389

foreword
When I founded ReadWriteWeb1 back in April 2003, a tech news and analysis blog
that is now one of the world’s top 10 blogs,2 my goal was to explore the current era of
the web. The year 2003 was a time when the effects of the dot-com meltdown were still
being felt, yet there was something new stirring on the web, too. I christened my new
blog Read/Write Web (the slash and space have since been dropped) because this
new era of the web seemed to embody the notion that Tim Berners-Lee had when he
invented the web—that it ought to be editable by anyone and that everyone contributes
in some way to the web’s data.

 As Satnam Alag writes in this book, collective intelligence as a research field actually pre-
dates the web. But it was after the dot-com era had ended that we began to see evidence
of collective intelligence applied to the web. In 2003 we regularly saw it in sites like Ama-
zon, with its user reviews and recommendations, eBay with its user-driven auctions, Wiki-
pedia with its editable encyclopedia, and Google with its mysterious PageRank
algorithm for ranking the popularity of web pages.

 Sometime in 2004, O’Reilly & Associates coined the term Web 2.0, which eventually
gained mainstream acceptance as the term for this era of the web (just as dot-com
described the previous one). A central part of the new definition was the notion of
harnessing collective intelligence, in which user contributions could be valuable in
aggregate if mined and utilized in some way in your web site or application.

1 http://www.readwriteweb.com/
2 According to Technorati http://www.technorati.com/pop/blogs/
xv

http://www.readwriteweb.com/
http://www.technorati.com/pop/blogs/

FOREWORDxvi
 For all the popularity of Web 2.0, it remains difficult to implement many of its prin-
ciples. This is where this book comes in, because it applies mathematical formulas and
examples to the notion of collective intelligence (from now on simply known as CI).
After explaining how to gather data and extract intelligence on the web, in part 2 of
the book Satnam instructs you on specific CI techniques such as data mining, text
analysis, clustering, and predictive technology.

 And, pssst, do you want to know how to build a recommendation engine? This is an
area of web technology that we at ReadWriteWeb have been covering with great inter-
est in 2008. Recommendation engines, as Satnam notes, aim to show items of interest
to a user. But in our reviews of the current wave of recommendation engines, we have
seen that it’s hard—very hard—to get recommendations right. Satnam shows how the
leading practitioners, such as Amazon, Google News, and Netflix, build their recom-
mendation engines. He also explains the different approaches you can take, with
examples that developers can use and deploy in their own applications.

 The Read/Write Web, or Web 2.0, or the Social Web, whatever you want to call it,
relies on and builds value from user participation. If you’re a web developer, you’ll
want to know how to use CI techniques to ensure that your web application can
extract valuable data from its usage—and most importantly deliver that value right
back to the users, where it belongs. This book goes a long way towards explaining how
to do this.

 RICHARD MACMANUS

 FOUNDER/EDITOR, READWRITEWEB

preface
“What is the virality coefficient for your application?”

 This is an increasingly common question being asked of young companies as they
try to raise money from venture capitalists. New products are being designed that
inherently take advantage of virality within the product. Companies such as YouTube,
Facebook, Ning, LinkedIn, Skype, and more have grown from zero to millions of users
by leveraging the power of virality. With little or no marketing, these types of compa-
nies rely on the wisdom of crowds to spread exponentially from one user to two users,
then four, then eight, and so on. A simple link in an email, which worked for Hotmail
to grow its user base, may no longer be adequate for your application. Facebook and
LinkedIn enable users to build their networks by sending an invitation to others to
connect as friends or connections; other applications such as Skype and Jaxtr provide
free services as long as you’re connecting to someone who’s already a member, thus
encouraging users to register.

 It wasn’t long ago when things were different. I still remember a few years back
when I would ignore requests from others to connect on sites such as LinkedIn. Over
a period of time, after repeatedly getting requests to connect from friends and
acquaintances, I finally reached a tipping point and joined the network. The critical
mass of users on the application, in addition to word-of-mouth recommendations, was
good enough for me to see enough value to joining the network. Others had collec-
tively convinced me to change my ways and join the application—this is one aspect of
how collective intelligence is born and can manifest itself in your application.
xvii

PREFACExviii
 Over the last few years, there’s been a quiet revolution in the way users interact.
Time magazine even declared “you,” as in the collective set of users on the web, as the
person of the year for 2006. Users are no longer shy about expressing themselves. This
expression may be as simple as forwarding an interesting article to a friend, rating an
item, or generating new content—commonly known as user-generated content (UGC). To
harness this user revolution, a new breed of applications, commonly known as user-cen-
tric applications, are being developed. Putting the user at the center of the application,
leveraging social networks, and UGC are the new paradigms, and a high degree of per-
sonalization is now becoming the norm.

 It’s been almost two years since I first contacted Manning with the idea of writing a
book on collective intelligence. Ever since my graduate school days, I’ve been fasci-
nated by how you can discover interesting information by analyzing data. Over the
years, I was able to ground a lot of theory in the practical world, especially in the con-
text of large-scale web applications. One thing I knew was that there wasn’t a practical
book that could guide a developer through the various aspects of applying intelli-
gence in an application. I could see a typical developer’s eyes roll when delving into
the inner workings of an algorithm or applying some of the collective intelligence fea-
tures. There’s immense value that an application can create by leveraging user-interac-
tion data. As more and more companies joined the Web 2.0 parade, I wanted to write
a book that would guide developers to understanding and implementing collective
intelligence–related features in their applications.

 It took longer to write this book than I had hoped. Most of the book was written
while I was working full-time in demanding jobs. But the experience obtained by
implementing these concepts in the real world provided good insight into what would
be useful to others.

 Remember, applications that make use of every user interaction to improve the
value of the application for the user and other potential future users, and harness the
power of virality, will dominate their markets. This book provides a set of tools that
you’ll need to leverage the information provided by the users on your site. Whatever
forms of information may be available to you, this book will guide you in harnessing the
potential of your information to personalize the site for your users. Focus on the user,
and you shall succeed. For collective intelligence begins with a crowd of one.

acknowledgments
In the late seventeenth century, Sir Isaac Newton said, “If I have seen further, it is by
standing on the shoulders of giants.” Similarly, if I’ve been able to finish this book, it’s
with the help of a great number of people.

 First, this book wouldn’t have been possible without Associate Publisher Michael
Stephens. Mike’s passion and belief in the topic kept the book going. He’s an excel-
lent mentor and guides you through good times and bad. Just like Mike, my brain now
converts all text into lists of lists. It was a real privilege to work with my development
editor, Jeff Bleiel. Jeff spent countless hours providing feedback, digging deeper into
why things were written in a certain way, and improving the flow of the text. Thanks to
Marjan Bace, Manning’s publisher, for helping fine-tune the table of contents, and for
his guiding principle of keeping the book focused on new content. Special thanks to
Karen Tegtmeyer for setting up and coordinating the peer reviews. And to the produc-
tion team of Benjamin Berg, Katie Tennant, and Gordan Salinovic for turning my
manuscript into the book that you are now holding. They spent countless hours
checking and rechecking the manuscript. If you’re thinking of writing a book, you
won’t find a better team than the one at Manning!

 I’d like to thank all of the reviewers of my manuscript, many of whom spent large
amounts of their free time on this task, for sending their excellent comments, sugges-
tions, and criticisms. Some of the reviewers wished to remain anonymous…but here
are a few I would like to acknowledge by name: Jérôme Bernard, Ryan Cox, Dave
Crane, Roozbeh Daneshvar, Steve Gutz, Clint Howarth, Frank Jania, Gordon Jones,
xix

ACKNOWLEDGMENTSxx
Murali Krishnan, Darren Neimke, Sumit Pal, Muhammad Saleem, Robi Sen, Sopan
Shewale, Srikanth Sundararajana, and John Tyler.

 Special thanks to Shiva Paranandi, for his help in reviewing the text and the code,
and for his technical proofread; Brendan Murray, for his technical proofread of the first
half of the book; Sean Handel, for his detailed review of and suggestions on the first four
chapters; Gautam Aggarwal, for his insightful comments; Krishna Mayuram, for his
review of the third chapter; Mark Hornick, specification lead of JDM, for his suggestions
on JDM-related chapters; Mayur Datar of Google, for reviewing the text for the Google
News Personalization section in chapter 12; Mark Hall, Lead for Pentaho’s data mining
solutions (WEKA), for his comments on WEKA-related content; Shi Hui Liu, Murtaza
Sonaseth, Kevin Xiao, Hector Villarreal, and the rest of the NextBio team, for their sug-
gestions; Shahram Seyedin-Noor of NextBio, for his comments on the early chapters,
encouragement, and his passionate philosophy on virality; and Ken DeLong and Mike
McEvoy of BabyCenter, for their review and suggestions to improve the manuscript.

 Special thanks to the awesome team at NextBio, especially the management team:
Saeid Akhtari, Shahram Seyedin-Noor, Ilya Kupershmidt, and Mostafa Ronaghi, who
introduced me to the field of data search and life sciences. We have a fantastic oppor-
tunity in intelligent search and user-centric applications; let’s make it happen!

 This book wouldn’t have been possible without the support of a number of people
whom I have worked for, including Patrick Grady, the charismatic CEO of Rearden
Commerce; Michael McEvoy, CEO of QuickTrac Software; K.J., CEO 123signup.com,
whom I thank for his mentorship; and Gordon Jones, SVP at TechWorks.

 And finally, thanks to Richard MacManus, founder and editor of ReadWriteWeb,
for taking the time to read the manuscript and write the foreword to the book.

 This book took longer to finish than I had hoped, while I was working full-time. Con-
sequently, it amounted to working all the time, even when we were on vacation. This
book wouldn’t have been possible without the active support of my wife, Alpana, and
sons, and also the active encouragement and support provided by our extended fami-
lies. On Alpana’s side, dad diligently proofread and cheered raw early drafts; mom tried
to free up my time; Rohini and Amit Verma provided constant encouragement. On my
side, my mom helped in every way she could and kept me going, while my two adoring
sisters, Nina and Amrita, made me feel as if I were the best writer in the world. Special
thanks to Rajeev, Ankit, and Anish Suri for their encouragement.

 Needless to say, this book was a nonstarter without the inspiration and support
provided by Alpana, Ayush, and Shray. “Dad, how many chapters did you finish last
night?” kept me going, as I didn’t want to see the disappointment in my sons’ eyes.
Thank you, Alpana, for supporting me through this venture—it wouldn’t have been
possible without your sacrifices. I look forward to some quality time with the
family, soon.

about this book
Collective Intelligence in Action is a practical book for applying collective intelligence to
real-world web applications. I cover a broad spectrum of topics, from simple illustra-
tive examples that explain the concepts and the math behind them, to the ideal archi-
tecture for developing a feature, to the database schema, to code implementation and
use of open source toolkits. Regardless of your background and nature of develop-
ment, I’m sure you’ll find the examples and code samples useful. You should be able
to directly use the code developed in this book. This is a practical book and I present
a holistic view on what’s required to apply these techniques in the real world. Conse-
quently, the book discusses the architectures for implementing intelligence—you’ll
find lots of diagrams, especially UML diagrams, and a number of screenshots from
well-known sites, in addition to code listings and even database schema designs.

 There are a plethora of examples. Typically, concepts and the underlying math for
algorithms are explained via examples with detailed step-by-step analysis. Accompany-
ing the examples is Java code that demonstrates the concepts by implementing them,
or by using open source frameworks.

 A lot of work has been done by the open source community in Java in the areas of
text processing and search (Lucene), data mining (WEKA), web crawling (Nutch),
and data mining standards (JDM). This book leverages these frameworks, presenting
examples and developing code that you can directly use in your Java application.
xxi

ABOUT THIS BOOKxxii
 The first few chapters don’t assume knowledge of Java. You should be able to fol-
low the concepts and the underlying math using the illustrative examples. For the
later chapters, a basic understanding of Java will be helpful. The book uses a number
of diagrams and screenshots to illustrate the concepts. The Resources section of each
chapter contains links to other useful content.

Roadmap

Chapter 1 provides a basic introduction to the field of collective intelligence (CI). CI is
an active area of research, and I’ve kept the focus on applying CI to web applications.
Section 1.2.1 is a personal favorite of mine; it provides a roadmap through a hypothet-
ical example of how you can apply CI to your application. This is a must-read, since it
helps to translate CI into features in your application and puts the flow of the book in
perspective. Chapter 1 should also provide you with a good overview of the three
forms of intelligence: direct, indirect, and derived.

 The book is divided into three parts. Part 1 deals with collecting data, both within
and outside the application, to be translated into intelligence later. Chapters 2
through 4 deal with gathering information from within one’s application, while chap-
ters 5 and 6 focus on gathering information from outside of one’s application.

 Chapter 2 provides an overview of the architecture required to embed CI in your
application, along with a quick overview of some of the basic concepts that are needed
to apply CI. Please take some time to go through section 2.2 in detail, as a firm under-
standing of the concepts presented in this section will be useful throughout the book.
This chapter also shows how intelligence can be derived by analyzing the actions of
the user. It’s worthwhile to go through the example in section 2.4 in detail, as under-
standing the concepts presented there will also be useful throughout the book.

 Chapter 3 continues with the theme of collecting data, this time from the user
action of tagging. It provides an overview of the three forms of tags and how tagging
can be leveraged. In section 3.3, we work through an example to show how tagging
data can be converted into intelligence. This chapter also provides an overview of the
ideal persistence architecture required to leverage tagging, and illustrates how to
develop tag clouds.

 Chapter 4 is focused on the different kinds of content that may be available in your
application and how they can be used to derive intelligence. The chapter begins with
providing an overview of the different architectures to embed content in your applica-
tion. I also briefly discuss content that’s typically associated with CI: blogs, wikis, and
message boards. Next, we work through a step-by-step example of how intelligence
can be extracted from unstructured text. This is a must-read section for those who
want to understand text analytics.

ABOUT THIS BOOK xxiii
 The next two chapters are focused on collecting data from outside of one’s appli-
cation—first by searching the blogosphere and then by crawling the web.

 Chapter 5 deals with building a framework to harvest information from the blogo-
sphere. It begins with developing a generalized framework to retrieve blog entries.
Next, it extends the framework to query blog-tracking providers such as Technorati,
Blogdigger, Bloglines, and MSN.

 Chapter 6 is focused on retrieving information from the web using web crawling. It
introduces intelligent web crawling or focused crawling, along with a short discussion
on dealing with hidden content. In this chapter, we first develop a simple web crawler.
This exercise is useful to understand all the pieces that need to come together to build
a web crawler and to understand the issues related to crawling the complete web. Next,
for scalable crawling, we look at Nutch, an open source scalable web crawler.

 Part 2 of the book is focused on deriving intelligence from the information col-
lected. It consists of four chapters—an introduction to the data mining process, stan-
dards, and toolkits, and chapters on developing a text-analysis toolkit, finding patterns
through clustering, and making predictions.

 Chapter 7 provides an introduction to the process of data mining—the process
and the various kinds of algorithms. It introduces WEKA, the open source data mining
toolkit that’s being extensively used, along with Java Data Mining (JDM) standard.

 Chapter 8 develops a text analysis toolkit; this toolkit is used in the remainder of
the book to convert unstructured text into a format that’s usable for the mining algo-
rithms. Here we leverage Lucene for text processing. In this section, we develop a cus-
tom analyzer to inject synonyms and detect phrases.

 In chapter 9, we develop clustering algorithms. In this chapter, we develop the
implementation for the k-means and hierarchical clustering algorithms. We also look
at how we can leverage WEKA and JDM for clustering. Building on the blog harvesting
framework developed in chapter 5, we also illustrate how we can cluster blog entries.

 In chapter 10, we deal with algorithms related to making predictions. We first
begin with classification algorithms, such as decision trees, Naïve Bayes’ classifier, and
belief networks. This chapter covers three algorithms for making predictions: linear
regression, multi-layer perceptron, and radial basis function. It builds on the example
of harvesting blog entries to illustrate how WEKA and JDM APIs can be leveraged for
both classification and regression.

 Part 3 consists of two chapters, which deal with applying intelligence within one’s
application.

 Chapter 11 deals with intelligent search. It shows how you can leverage Lucene,
along with other useful toolkits and frameworks that leverage Lucene. It also covers
six different approaches being taken in the area of intelligent search.

ABOUT THIS BOOKxxiv
 The last chapter, chapter 12, illustrates how to build a recommendation engine
using both content-based and collaborative-based approaches. It also covers real-world
case studies on how recommendation engines have been build at Amazon, Google
News, and Netflix.

Code conventions and downloads

All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Method and function names, object properties, XML elements,
and attributes in text are presented using this same font. Code annotations accom-
pany many of the listings, highlighting important concepts. In some cases, numbered
bullets link to explanations that follow the listing.

 Source code for all of the working examples in this book is available for download
from www.manning.com/CollectiveIntelligenceinAction. Basic setup documentation
is provided with the download.

Author Online

The purchase of Collective Intelligence in Action includes free access to a private web
forum run by Manning Publications, where you can make comments about the book,
ask technical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
CollectiveIntelligenceinAction. This page provides information about how to get on
the forum once you’re registered, what kind of help is available, and the rules of con-
duct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It isn’t a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray! The
Author Online forum and the archives of previous discussions will be accessible from
the publisher’s web site as long as the book is in print.

About the author

SATNAM ALAG, PH.D, is currently the vice president of engineering at NextBio (www.next-
bio.com), a vertical search engine and a Web 2.0 user-centric application for the life sci-
ences community. He’s a seasoned software professional with more than 15 years of
experience in machine learning and over a decade of experience in commercial soft-
ware development and management. Dr. Alag worked as a consultant with Johnson &
Johnson’s BabyCenter, where he helped develop their personalization engine. Prior to
that, he was the chief software architect at Rearden Commerce and began his career at

www.manning.com/CollectiveIntelligenceinAction
www.manning.com/CollectiveIntelligenceinAction
www.manning.com/CollectiveIntelligenceinAction
www.nextbio.com
www.nextbio.com

ABOUT THIS BOOK xxv
GE R&D. He’s a Sun Certified Enterprise Architect (SCEA) for the Java Platform. Dr.
Alag earned his Ph.D in engineering from UC Berkeley, and his dissertation was on the
area of probabilistic reasoning and machine learning. He’s published a number of
peer-reviewed articles.

About the title

By combining introductions, overviews, and how-to examples, the In Action books are
designed to help learning and remembering. According to research in cognitive science,
the things people remember are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we’re convinced that for learn-
ing to become permanent it must pass through stages of exploration, play, and, inter-
estingly, retelling of what is being learned. People understand and remember new
things, which is to say they master them, only after actively exploring them. Humans
learn in action. An essential part of an In Action book is that it’s example-driven. It encour-
ages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or solve a problem. They need books that allow them
to jump in and jump out easily and learn just what they want just when they want it.
They need books that aid them in action. The books in this series are designed for
such readers.

About the cover illustration

The figure on the cover of Collective Intelligence in Action is captioned “Le Champe-
nois,” a resident of the Champagne region in northeast France, best known for its
sparkling white wine. The illustration is taken from a 19th century edition of Sylvain
Maréchal’s four-volume compendium of regional dress customs published in France.
Each illustration is finely drawn and colored by hand. The rich variety of Maréchal’s
collection reminds us vividly of how culturally apart the world’s towns and regions
were just 200 years ago. Isolated from each other, people spoke different dialects and
languages. In the streets or in the countryside, it was easy to identify where they lived
and what their station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

Part 1

Gathering data
 for intelligence

Chapter 1 begins the book with a brief overview of what collective intelli-
gence is and how it manifests itself in your application. Then we move on to
focus on how we can gather data from which we can derive intelligence. For this,
we look at information both inside the application (chapters 2 through 4) and
outside the application (chapters 5 and 6).

 Chapter 2 deals with learning from the interactions of users. To get the ball
rolling, we look at the architecture for embedding intelligence, and present
some of the basic concepts related to collective intelligence (CI). We also cover
how we can gather data from various forms of user interaction. We continue with
this theme in chapter 3, which deals with tagging. This chapter contains all the
information you need to build tagging-related features in your application. In
chapter 4, we look at the various forms of content that are typically available in a
web application and how to derive collective intelligence from it.

 Next, we change our focus to collecting data from outside our application.
We first deal with searching the blogosphere in chapter 5. This is followed by
chapter 6, which deals with intelligently crawling the web in search of rele-
vant content.

Understanding
 collective intelligence
Web applications are undergoing a revolution.
 In this post-dot-com era, the web is transforming. Newer web applications trust

their users, invite them to interact, connect them with others, gain early feedback
from them, and then use the collected information to constantly improve the appli-
cation. Web applications that take this approach develop deeper relationships with
their users, provide more value to users who return more often, and ultimately
offer more targeted experiences for each user according to her personal need.

This chapter covers
■ The basics of collective intelligence
■ How collective intelligence manifests itself in

web applications
■ Building user-centric applications using

collective intelligence
■ The three forms of intelligence: direct, indirect,

and derived
3

4 CHAPTER 1 Understanding collective intelligence
 Web users are undergoing a transformation.
 Users are expressing themselves. This expression may be in the form of sharing

their opinions on a product or a service through reviews or comments; through shar-
ing and tagging content; through participation in an online community; or by con-
tributing new content.

 This increased user interaction and participation gives rise to data that can be con-
verted into intelligence in your application. The use of collective intelligence to per-
sonalize a site for a user, to aid him in searching and making decisions, and to make
the application more sticky are cherished goals that web applications try to fulfill.

 In his book, Wisdom of the Crowds, James Surowiecki, business columnist for The New
Yorker, asserts that “under the right circumstances, groups are remarkably intelligent,
and are often smarter than the smartest people in them.” Surowiecki says that if the
process is sound, the more people you involve in solving a problem, the better the
result will be. A crowd’s collective intelligence will produce better results than those of a
small group of experts if four basic conditions are met. These four basic conditions
are that “wise crowds” are effective when they’re composed of individuals who have
diverse opinions; when the individuals aren’t afraid to express their opinions; when
there’s diversity in the crowd; and when there’s a way to aggregate all the information
and use it in the decision-making process.

 Collective intelligence is about making your application more valuable by tapping
into wise crowds. More formally, collective intelligence (CI) as used in this book simply
and concisely means

To effectively use the information provided by others to improve one’s application.

This is a fairly broad definition of collective intelligence—one which uses all types of
information, both inside and outside the application, to improve the application for a
user. This book introduces you to concepts from the areas of machine learning, infor-
mation retrieval, and data mining, and demonstrates how you can add intelligence to
your application. You’ll be exposed to how your application can learn about individ-
ual users by correlating their interactions with those of others to offer a highly person-
alized experience.

 This chapter provides an overview of collective intelligence and how it can mani-
fest itself in your application. It begins with a brief introduction to the field of collec-
tive intelligence, then goes on to describe the many ways it can be applied to your
application, and finally shows how intelligence can be classified.

1.1 What is collective intelligence?
Collective intelligence is an active field of research that predates the web. Scientists
from the fields of sociology, mass behavior, and computer science have made impor-
tant contributions to this field. When a group of individuals collaborate or compete
with each other, intelligence or behavior that otherwise didn’t exist suddenly emerges;
this is commonly known as collective intelligence. The actions or influence of a few indi-
viduals slowly spread across the community until the actions become the norm for the

5What is collective intelligence?
community. To better understand how this circle of influence spreads, let’s look at a
couple of examples.

 In his book The Hundredth Monkey,1 Ken Keyes recounts an interesting story about
how change is propagated in groups. In 1952, on the isolated Japanese island of
Koshima, scientists observed a group of monkeys. They offered them sweet potatoes;
the monkeys liked the sweet potatoes but found the taste of dirt and sand on the
potatoes unpleasant. One day, an 18-month-old monkey named Imo found a solution
to the problem by washing the potato in a nearby stream of water. She taught this
trick to her mother. Her playmates also learned the trick and taught it to their moth-
ers. Initially, only adults who imitated their children learned the new trick, while the
others continued eating the old way. In the autumn of 1958, a number of monkeys
were washing their potatoes before eating. The exact number is unknown, but let’s
say that out of 1,000, there were 99 monkeys who washed their potatoes before eat-
ing. Early one sunny morning, a 100th monkey decided to wash his potato. Then,
incredibly, by evening all monkeys were washing their potatoes. The 100th monkey
was that tipping point that caused others to change their habits for the better. Soon it
was observed that monkeys on other islands were also washing their potatoes before
eating them.

 As users interact on the web and express their opinions, they influence others.
Their initial circle of influence is the group of individuals that they most interact with.
Because the web is a highly connected network of sites, this circle of influence grows and
may shape the thoughts of everybody in the group. This circle of influence also grows
rapidly throughout the community—another example helps illustrate this further.

 In 1918, as the influenza flu pandemic spread, nearly 14 percent of Fiji’s population
died in just 16 days. Nearly one third of the native population in Alaska had a similar fate;
it’s estimated that worldwide, nearly twenty-five million people died of the flu. A pan-
demic is a global disease outbreak and spreads from person to person. First, one person
is affected, who then transmits it to another and then another. The newly infected per-
son transmits the flu to others; this causes the disease to spread exponentially.

 In October 2006, Google bought YouTube for $1.65 billion. In its 20 months of
existence, YouTube had grown to be one of the busiest sites on the Internet, dishing
out 100 million video2 views a day. It ramped from zero to more than 20 million
unique user visits a day, with mainly viral marketing—spread from person to person,
similar to the way the pandemic flu spreads. In YouTube’s case, each time a user
uploaded a new video, she was easily able to invite others to view this video. As those
others viewed this video, other related videos popped up as recommendations, keep-
ing the user further engaged. Ultimately, many of these viewers also became submit-
ters and uploaded their own videos as well. As the number of videos increased, the site
became more and more attractive for new users to visit.

1 http://en.wikipedia.org/wiki/Hundredth_Monkey
2 As of September 2006

http://en.wikipedia.org/wiki/Hundredth_Monkey

6 CHAPTER 1 Understanding collective intelligence
 Whether you’re a budding startup, a recognized market leader, or looking to take
an emerging application or web site to the next level, harnessing information from
users improves the perceived value of the application to both current and prospective
users. This improved value will not only encourage current users to interact more, but
will also attract new users to the application. The value of the application further
improves as new users interact with it and contribute more content. This forms a self-
reinforcing feedback loop, commonly known as a network effect, which enables wider
adoption of the service. Next, let’s look at CI as it applies to web applications.

1.2 CI in web applications
In this section, we look at how CI manifests itself in web applications. We walk
through an example to illustrate how it can be used in web applications, briefly
review its benefits, see how it fits in with Web 2.0 and can be leveraged to build user-
centric applications.

 Let’s expand on our earlier definition of collective intelligence. Collective intelli-
gence of users in essence is

■ The intelligence that’s extracted out from the collective set of interactions and contribu-
tions made by your users.

■ The use of this intelligence to act as a filter for what’s valuable in your application for a
user—This filter takes into account a user’s preferences and interactions to pro-
vide relevant information to the user.

This filter could be the simple influence
that collective user information has on a
user—perhaps a rating or a review written
about a product, as shown in figure 1.1—or
it may be more involved—building models
to recommend personalized content to a
user. This book is focused toward building
the more involved models to personalize
your application.

 As shown in figure 1.2, there are three
things that need to happen to apply col-
lective intelligence in your application.
You need to

1 Allow users to interact with your site and with each other, learning about each
user through their interactions and contributions.

2 Aggregate what you learn about your users and their contributions using some
useful models.

3 Leverage those models to recommend relevant content to a user.

Let’s walk through an example to understand how collective intelligence can be a cat-
alyst to building a successful web application.

User
UserA user influences others

by reviews, ratings,
recommendations, and blogs

A user is influenced by other reviews, ratings,
recommendations, and blogs

Intelligence from
Mining Data

Figure 1.1 A user may be influenced by other
users either directly or through intelligence derived
from the application by mining the data.

7CI in web applications
1.2.1 Collective intelligence from the ground up: a sample application

In our example, John and Jane are two engineers who gave up their lucrative jobs to
start a company. They’re based in Silicon Valley and as is the trend nowadays, they’re
building their fledgling company without any venture capital on a shoestring budget
leveraging open source software. They believe in fast-iterative agile-based develop-
ment cycles and aren’t afraid to release beta software to gain early feedback on their
features .3 They’re looking to build a marketplace and plan to generate revenue both
from selling ad space and from sharing revenue from sold items.

 In their first iteration, they launched an application where users—mainly friends
and family—could buy items and view relevant articles. There wasn’t much in terms of
personalization or user interaction or intelligence—a plain vanilla system.

 Next, they added the feature of showing a list of top items purchased by users,
along with a list of recently purchased items. This is perhaps the simplest form of
applying collective intelligence—providing information in aggregate to users. To grow the
application virally, they also enabled users to email these lists to others. Users used
this to forward interesting lists of items to their friends, who in turn became users of
the application.

 In their next iteration, they wanted to learn more about their users. So they built a
basic user profile mechanism that contained explicit and implicit profile information.
The explicit information was provided directly by the users as part of their
accounts—first name, age, and so on. The implicit information was collected from the
user interaction data—this included information such as the articles and content
users viewed and the products they purchased. They also wanted to show more rele-
vant articles and content to each user, so they built a content-based recommendation
engine that analyzed the content of articles—keywords, word frequency, location, and
so forth to correlate articles with each other and recommend possibly interesting arti-
cles to each user.

 Next, they allowed users to generate content. They gave users the ability to write
about their experiences with the products, in essence writing reviews and creating
their list of recommendations through both explicit ratings of individual products

3 Note that beta doesn’t mean poor quality; it just means that it’s incomplete in functionality.

User

Contribute and interact

Intelligence from
Mining Data

UserModelModel

Personalized
Content

ContentContribute and interact

1 2

3

Figure 1.2 Three components to
harnessing collective intelligence.
1: Allow users to interact. 2: Learn
about your users in aggregate.
3: Personalize content using user
interaction data and aggregate data.

8 CHAPTER 1 Understanding collective intelligence
and a “my top 10 favorite products” list. They also gave users the capability to rate
items and rate reviews. Ratings and reviews have been shown to influence other users,
and numerical rating information is also useful as an input to a collaborative-based
recommendation engine.

 With the growing list of content and products available on the site, John and Jane
now found it too cumbersome and expensive to manually maintain the classification
of content on their site. The users also provided feedback that content navigation
menus were too rigid. So they introduced dynamic navigation via a tag cloud—naviga-
tion built by an alphabetical listing of terms, where font size correlates with impor-
tance or number of occurrences of a tag. The terms were automatically extracted
from the content by analyzing the content. The application analyzed each user’s inter-
action and provided users with a personalized set of tags for navigating the site. The
set of tags changed as the type of content visited by the users changed. Further, the
content displayed when a user clicked on a tag varied from user to user and changed
over time. Some tags pulled the data from a search engine, while others from the rec-
ommendation engine and external catalogs.

 In the next release, they allowed the users to explicitly tag items by adding free text
labels, along with saving or bookmarking items of interest. As users started tagging items,
John and Jane found that there was a rich set of information that could be derived. First
of all, users were providing new terms for the content that made sense to them—
in essence they built folksonomies.4 The tag cloud navigation now had both machine-
generated and user-generated tags. The process of extracting tags using an automated
algorithm could also be enhanced using the dictionary of tags built by the users. These
user-added tags were also useful for finding keywords used by an ad-generation engine.
They could also use the tags created by users to connect users with each other and with
other items of interest. This is collective intelligence in action.

 Next, they allowed their users to generate content. Users could now blog about
their experiences, or ask and respond to questions on message boards, or participate
in building the application itself by contributing to wikis. John and Jane quickly built
an algorithm that could extract tags from the unstructured content. They then
matched the interests of users—gained from analyzing their interaction in the appli-
cations—with those of other users to find relevant items. They were soon able to learn
enough about their users to personalize the site for each user, and to provide relevant
content—targeting niche items to niche users. They could also target relevant adver-
tisements based on the user profile and context of interaction.

 They also modified the search results to make them more relevant to each user, for
which they used the user’s profile and interaction history when appropriate. They cus-
tomized advertising by using keywords that were relevant to both the user and the
page content.

 To make the application stickier, they started aggregating and indexing external con-
tent—they would crawl a select list of external web sites to index the content and present

4 Folksonomies are classifications created through the process of users tagging items.

9CI in web applications
links to it when relevant. They also connected to sites that tracked the blogosphere, pre-
senting the users with relevant content from what others were saying in blogs.

 They also clustered users and items to find patterns in the data and built models to
automatically classify content into one of many categories.

 The users soon liked the application so much that they started recommending
the application to their friends and relatives and the user base grew virally. In our
example, after a couple of years, John and Jane retired to Hawaii, having sold the
company for a gigantic amount, where they waited for the next web revolution…
Web 3.0!

 These in essence are the many ways by which collective intelligence will manifest
itself in your application, and thus more or less the outline for this book. Table 1.1
summarizes the ways to harness collective intelligence in your application. Each of
these is discussed throughout the book.

John and Jane showed us a few nice things to apply to their site, but there are other ben-
efits of applying collective intelligence to your application. Let’s look at that next.

1.2.2 Benefits of collective intelligence

Applying collective intelligence to your application impacts it in the following
manner:

Table 1.1 Some of the ways to harness collective intelligence in your application

Techniques Description

Aggregate information: lists Create lists of items generated in the aggregate by your users. Perhaps,
Top List of items bought, or Top Search Items or List of Recent Items.

Ratings, reviews, and
recommendations

Collective information from your users influences others.

User-generated content: blogs,
wikis, message boards

Intelligence can be extracted from contributions by users. These con-
tributions also influence other users.

Tagging, bookmarking, voting,
saving

Collective intelligence of users can be used to bubble up interesting
content, learn about your users, and connect users.

Tag cloud navigation Dynamic classification of content using terms generated via one or
more of the following techniques: machine-generated, professionally-
generated, or user-generated.

Analyze content to build user
profiles

Analyze content associated with a user to extract keywords. This
information is used to build user profiles.

Clustering and predictive models Cluster users and items, build predictive models.

Recommendation engines Recommend related content or users based on intelligence gathered
from user interaction and analyzing content.

Search Show more pertinent search results using a user’s profile.

Harness external content Provide relevant information from the blogosphere and external sites

10 CHAPTER 1 Understanding collective intelligence
■ Higher retention rates —The more users interact with the application, the stickier it
gets for them, and the higher the probability that they’ll become repeat visitors.

■ Greater opportunities to market to the user—The greater the number of interactions,
the greater the number of pages visited by the user, which increases the oppor-
tunities to market to or communicate with the user.

■ Higher probability of a user completing a transaction and finding information of
interest —The more contextually relevant information that a user finds, the bet-
ter the chances that he’ll have the information he needs to complete the trans-
action or find content of interest. This leads to higher click-through and
conversion rates for your advertisements.

■ Boosting search engine rankings —The more users participate and contribute con-
tent, the more content is available in your application and indexed by search
engines. This could boost your search engine ranking and make it easier for
others to find your application.

Collective intelligence is a term that is increasingly being used in the context of Web 2.0
applications. Let’s take a closer look at how it fits in with Web 2.0.5

1.2.3 CI is the core component of Web 2.0

Web 2.0 is a term that has generated passionate emotions, ranging from being dismissed
as marketing jargon to being anointed as the new or next generation of the Internet.
There are seven principles that Web 2.0 companies demonstrate, as shown in table 1.2.5

5 Refer to Tim O’Reilly’s paper on Web 2.0.

Table 1.2 Seven principles of Web 2.0 applications

Principle Description

The network is the
platform

Companies or users who use traditional licensed software have to deal with run-
ning the software, upgrading it periodically to keep up with newer versions, and
scaling it to meet appropriate levels of demand. Most successful Web 2.0 com-
panies no longer sell licensed software, but instead deliver their software as
a service. The end customer simply uses the service through a browser. All the
headaches of running, maintaining, and scaling the software and hardware are
taken care of by the service provider seamlessly to the end user. The software
is upgraded fairly frequently by the service provider and is available 24 x 7.

Harnessing collective
intelligence

The key to the success of Web 2.0 applications is how effectively they can
harness the information provided by users. The more personalized your ser-
vice, the better you can match a user to content of her choice.

Hard-to-replicate data as
competitive advantage

Hard-to-replicate, unique, large datasets provide a competitive advantage to a
company.
Web 2.0 is data and software combined. One can’t replicate Craigslist, eBay,
Amazon, Flickr, or Google simply by replicating the software. The underlying
data that the software generates from user activity is tremendously valuable.
This dataset grows every day, improving the product daily.

11CI in web applications
It is widely regarded that harnessing collective intelligence is the key or core compo-
nent to Web 2.0 applications. In essence, Web 2.0 is all about inviting users to partici-
pate and interact. But what do you do with all the data collected from user
participation and interaction? This information is wasted if it can’t be converted into
intelligence and channeled into improving one’s application. That’s where collective
intelligence and this book come in.

 Dion Hinchliffe, in his article, “Five Great Ways to Harness Collective Intelli-
gence,” makes an analogy to the apocryphal Einstein quote that compound interest
was the most important force in the universe. Similarly, web applications that effec-
tively harness collective intelligence can “benefit” in much the same way—harnessing
collective intelligence is about those very same exponential effects.

NOTE Collective intelligence is the heart of Web 2.0 applications. It’s generally
acknowledged that one of the core components of Web 3.0 applications
will be the use of artificial intelligence.6 There’s debate as to whether this
intelligence will be attained by computers reasoning like humans or by
sites leveraging the collective intelligence of humans using techniques
such as collaborative filtering. Either way, having the dataset generated
from real human interactions will be necessary and useful.

In order to effectively leverage collective intelligence, you need to put the user at the
center of your application, in essence building a user-centric application.

The perpetual beta Web 2.0 companies release their products early to involve their users and
gain important feedback. They iterate often by having short release cycles.
They involve the users early in the process. They instrument the application
to capture important metrics on how a new feature is being used, how often
it’s being used, and by whom. If you aren’t sure how a particular feature
should look and have competing designs, expose a prototype of each to dif-
ferent sets of users and measure the success of each. Involve the customers
and let them decide which one they like. By having short development cycles,
it’s possible to solicit user feedback, incorporate changes early in the product
life cycle, and build what the users really want.

Simpler programming
models

Simpler development models lead to wider adoption and reuse. Design your
application for “hackability” and “remixability” following open standards,
using simple programming models and a licensing structure that puts as few
restrictions as necessary.

Software above the
level of a single device

Applications that operate across multiple devices will be more valuable than
those that operate in a single device.

Rich user experience The success of AJAX has fueled the growing use of rich user interfaces in
Web 2.0 applications. Adobe Flash/Flex and Microsoft Silverlight are other
alternatives for creating rich UIs.

6 http://en.wikipedia.org/wiki/Web_3.0#An_evolutionary_path_to_artificial_intelligence

Table 1.2 Seven principles of Web 2.0 applications (continued)

Principle Description

http://en.wikipedia.org/wiki/Web_3.0#An_evolutionary_path_to_artificial_intelligence

12 CHAPTER 1 Understanding collective intelligence
1.2.4 Harnessing CI to transform from content-centric
to user-centric applications

Prior to the user-centric revolution, many applications put little emphasis on the user.
These applications, known as content-centric applications, focused on the best way to
present the content and were generally static from user to user and from day to day.
User-centric applications leverage CI to fundamentally change how the user interacts
with the web application. User-centric applications make the user the center of the
web experience and dynamically reshuffle the content based on what’s known about
the user and what the user explicitly asks for.

 As shown in figure 1.3, user-centric applications are composed of the following
four components:

■ Core competency —The main reason why a user comes to the application.
■ Community— Connecting users with other users of interest, social networking,

finding other users who may provide answers to a user’s questions.
■ Leveraging user-generated content — Incorporating generated content and interac-

tions of users to provide additional content to users.
■ Building a marketplace— Monetizing the application by product and/or service

placements and showing relevant advertisements.

The user profile is at the center of the application. A part of the user profile may be
generated by the user, while some parts of it may be learned by the application based
on user interaction. Typically, sites that allow user-generated content have an abun-
dance of information. User-centric sites leverage collective intelligence to present rel-
evant content to the user.

 Figure 1.4 shows a screenshot of one such user-centric application—LinkedIn,7

a popular online network of more than 20 million professionals.8 As shown in

7 http://www.linkedin.com/static?key=company_info&trk=ftr_abt
8 As of May 2008

1. Core
Competency

2. Community
Social Networking,

Find Answers,
Jobs

3. User-Generated
Content

Q&A, Blogs,
Tagging,
Reviews

4. Marketplace
Sell products,

Services,
Ads

User
User profile,
interaction history,
connections

Figure 1.3 Four pillars for
user-centric applications

http://www.linkedin.com/static?key=company_info&trk=ftr_abt

13CI in web applications
the screenshot, the LinkedIn application leverages the four components of user-
centric applications:

■ Core competency — Users come to the site to connect with others and build their
professional profiles.

■ Community — Users create connections with other users; connections are used
while looking up people, responding to jobs, and answering questions asked by
other users. Other users are automatically recommended as possible connec-
tions by the application.

■ User-generated content — Most of the content at the site is user-generated. This
includes the actual professional profiles, the questions asked, the feed of
actions—such as a user updating his profile, uploading his photograph, or con-
necting to someone new.

■ Marketplace —The application is monetized by means of advertisements, job
postings, and a monthly subscription for the power-users of the system, who
often are recruiters. The monetization model used is also commonly known as
freemium9— basic services are free and are used by most users, while there’s a
charge for premium services that a small minority of users pay for.

9 http://en.wikipedia.org/wiki/Freemium_business_model

Figure 1.4 An example of a user-centric application—LinkedIn (www.linkedin.com)

http://en.wikipedia.org/wiki/Freemium_business_model
www.linkedin.com

14 CHAPTER 1 Understanding collective intelligence
For user-centric applications to be successful, they need to personalize the site for
each user. CI can be beneficial to these applications. So far in this section, we’ve
looked at what collective intelligence is, how it manifests itself in your application, the
advantages of applying it, and how it fits in with Web 2.0. Next, we’ll take a more
detailed look at the many forms of information provided by the users.

1.3 Classifying intelligence
Figure 1.5 illustrates the three types of intelligence
that we discuss in this book. First is explicit infor-
mation that the user provides in the application.
Second is implicit information that a user provides
either inside or outside the application and is typ-
ically in an unstructured format. Lastly, there is
intelligence that’s derived by analyzing the aggre-
gate data collected. This piece of derived intelli-
gence is shown on the upper half of the triangle, as
it is based on the information gathered by the other
two parts.

 Data comes in two forms: structured data and
unstructured data. Structured data has a well-
defined form, something that makes it easily
stored and queried on. User ratings, content articles viewed, and items purchased are
all examples of structured data. Unstructured data is typically in the form of raw text.
Reviews, discussion forum posts, blog entries, and chat sessions are all examples of
unstructured data.

 In this section, we look at the three forms of intelligence: explicit, implicit, and
derived.

1.3.1 Explicit intelligence

This section deals with explicit information that a user provides. Here are a few exam-
ples of how a user provides explicit information that can be leveraged.
REVIEWS AND RECOMMENDATIONS

A recommendation made by a friend or a person of influence can have a big impact
on other users within the same group. Moreover, a review or comments about a user’s
experience with a particular provider or service is contextually relevant for other users
inquiring about that topic, especially if it’s within the context of similar use.
TAGGING

Adding the ability for users to add tags—keywords or labels provided by a user—to
classify items of interest such as articles, items being sold, pictures, videos, podcasts,
and so on is a powerful technique to solicit information from the user. Tags can also
be generated by professional editors or by an automated algorithm that analyzes con-
tent. These tags are used to classify data, bookmark sites, connect people with each
other, aid users in their searches, and build dynamic navigation in your application, of
which a tag cloud is one example.

Implicit
Blogs, Wikis,
Communities

Explicit
Reviews, Tags,

Recommendations

Derived
Intelligence

Recommendation
Engine, Clustering,
Search, Web and

Text Mining

Bookmarks,

Figure 1.5 Classifying user-generated
information

15Classifying intelligence
Figure 1.6 shows a tag cloud showing popular tags at del.icio.us, a popular bookmarking
site. In a tag cloud, tags are displayed alphabetically, with the size of the font representing
the frequency of occurrence. The larger the font of the tag, the more frequently it occurs.
VOTING

Voting is another way to involve and obtain useful information from the user. Digg, a
web site that allows users to contribute and vote on interesting articles, leverages this
idea. Every article on Digg is submitted and voted on by the Digg community. Submis-
sions that receive many votes in a short period tend to move up in rank. This is a good
way to share, discover, bookmark, and promote important news. Figure 1.7 is a screen-
shot from Digg.com showing news items with the number of Diggs associated with each.

1.3.2 Implicit intelligence

This section deals with indirect information that a user provides. Here are a few exam-
ples of how a user provides this information.

 Information relevant to your application may appear in an unstructured free-form
text format through reviews, messages, blogs, and so forth. A user may express his
opinion online, either within your application or outside the application, by writing in
his blog or replying to a question in an online community. Thanks to the power of
search engines and blog-tracking engines, this information becomes easily available to
others and helps to shape their opinions.

 You may want to augment your current application by aggregating and mining
external data. For example, if your area is real estate applications, you may want to aug-
ment your application with additional data harvested from freely available external

Figure 1.6 This tag cloud from del.icio.us shows popular tags at the site.

16 CHAPTER 1 Understanding collective intelligence
sites, for example, public records on housing sales, reviews of schools and neighbor-
hoods, and so on.

 Blogs are online journals where information is displayed in reverse chronological
order. The blogosphere—the collection of blogs on the net—is huge and growing fast.
As of August 2008, Technorati, a private company that tracks blogs, was tracking 112.8
million blogs. With a new blog being created virtually every second, the blogosphere is
an important source of information that can be leveraged in your application. People
write blogs on virtually every topic.

 Next, let’s look at the third category of intelligence, which is derived from analyz-
ing the data collected.

1.3.3 Derived intelligence

This section deals with information derived from the data you collect from users. Here
are a few examples of techniques and features that deal with derived intelligence.
DATA AND TEXT MINING

The process of finding patterns and trends that would otherwise go undetected in
large datasets using automated algorithms is known as data mining. When the data is in
the form of text, the mining process is commonly known as text data mining. Another

Figure 1.7 Screen shot from Digg.com showing news items with the number of diggs for each

17Classifying intelligence
related field is information retrieval, which deals with finding relevant information by
analyzing the content of the documents. Web and text mining deal with analyzing
unstructured content to find patterns in them. Most applications are content-rich.
This content is indexed by search engines and can be used by the recommendation
engine to recommend relevant content to a user.
CLUSTERING AND PREDICTIVE ANALYSIS

Clustering and predictive analysis are two main components of data mining. Clustering
techniques enable you to classify items—users or content—into natural groupings. Pre-
dictive analysis is a mathematical model that predicts a value based on the input data.
INTELLIGENT SEARCH

Search is one of the most commonly used techniques for retrieving content. In later
chapters, we look at Lucene—an open source Java search engine developed through the
Apache foundation. We look at how information about the user can be used to custom-
ize the search through intelligent filters that enhance search results when appropriate.
RECOMMENDATION ENGINE

A recommendation engine offers relevant content to a user. Again, recommendation
engines can be built by analyzing the content, by analyzing user interactions (collabor-
ative approach), or a combination of both. Figure 1.8 shows a screenshot from Yahoo!
Music in which a user is recommended music by the application.

Figure 1.8 Screenshot from Yahoo! Music recommending songs of interest

18 CHAPTER 1 Understanding collective intelligence
Recommendation engines use inputs from the user to offer a list of recommended
items. The inputs to the recommendation engine may be items in the user’s shopping
list, items she’s purchased in the past or is considering purchasing, user-profile infor-
mation such as age, tags and articles that the user has looked at or contributed, or any
other useful information that the user may have provided. For large online stores such
as Amazon, which has millions of items in its catalog, providing fast recommendations
can be challenging. Recommendation engines need to be fast and scale indepen-
dently of the number of items in the catalog and the number of users in the system;
they need to offer good recommendations for new customers with limited interaction
history; and they need to age out older or irrelevant interaction data (such as a gift
bought for someone else) from the recommendation process.

1.4 Summary
Collective intelligence is powering a new breed of applications that invite users to inter-
act, contribute content, connect with other users, and personalize the site experience.

 Users influence other users. This influence spreads outward from their immediate
circle of influence until it reaches a critical number, after which it becomes the norm.
Useful user-generated content and opinions spread virally with minimal marketing.

 Intelligence provided by users can be divided into three main categories. First is
direct information/intelligence provided by the user. Reviews, recommendations, rat-
ings, voting, tags, bookmarks, user interaction, and user-generated content are all
examples of techniques to gather this intelligence. Next is indirect information pro-
vided by the user either on or off the application, which is typically in unstructured
text. Blog entries, contributions to online communities, and wikis are all sources of
intelligence for the application. Third is a higher level of intelligence that’s derived
using data mining techniques. Recommendation engines, use of predictive analysis
for personalization, profile building, market segmentation, and web and text mining
are all examples of discovering and applying this higher level of intelligence.

 The rest of this book is divided into three parts. The first part deals with collecting
data for analysis, the second part deals with developing algorithms for analyzing the
data, and the last part deals with applying the algorithms to your application. Next, in
chapter 2, we look at how intelligence can be gathered by analyzing user interactions.

1.5 Resources
 “All things Web 2.0.” http://www.allthingsweb2.com/component/option,com_mtree/

Itemid,26/
 Anderson, Chris. The Long Tail: Why the Future of Business Is Selling Less of More. 2006. Hyperion
 Hinchliffe, Dion. “The Web 2.0 Is Here.” http://web2.wsj2.com/web2ishere.htm
 “Five Great Ways to Harness Collective Intelligence.” January 17, 2006, http://web2.wsj2.com/

five_great_ways_to_harness_collective_intelligence.htm
 “Architectures of Participation: The Next Big Thing.” August 1, 2006, http://web2.wsj2.com/

architectures_of_participation_the_next_big_thing.htm

http://www.allthingsweb2.com/component/option,com_mtree/Itemid,26/
http://www.allthingsweb2.com/component/option,com_mtree/Itemid,26/
http://web2.wsj2.com/web2ishere.htm
http://web2.wsj2.com/five_great_ways_to_harness_collective_intelligence.htm
http://web2.wsj2.com/five_great_ways_to_harness_collective_intelligence.htm
http://web2.wsj2.com/architectures_of_participation_the_next_big_thing.htm
http://web2.wsj2.com/architectures_of_participation_the_next_big_thing.htm

19Resources
 Jaokar, Ajit. “Tim O’Reilly’s seven principles of web 2.0 make a lot more sense if you change the
order.” April 17, 2006, http://opengardensblog.futuretext.com/archives/2006/04/
tim_o_reillys_s.html

 Kroski, Ellyssa. “The Hype and the Hullabaloo of Web 2.0.” http://infotangle.blogsome.com/
2006/01/13/the-hype-and-the-hullabaloo-of-web-20/

 McGovern, Gerry. “Collective intelligence: is your website tapping it?” April 2006, New Thinking,
http://www.gerrymcgovern.com/nt/2006/nt-2006-04-17-collective-intelligence.htm

 “One blog created ‘every second’.” BBC news, http://news.bbc.co.uk/1/hi/technology/
4737671.stm

 “Online Community Toolkit.” http://www.fullcirc.com/community/communitymanual.htm
 O’Reilly, Tim. “What Is Web 2.0: Design Patterns and Business Models for the Next

Generation of Software.” http://www.oreilly.com/pub/a/oreilly/tim/news/2005/09/30/
what-is-web-20.html

 “The Future of Technology and Proprietary Software.” December 2003, http://tim.oreilly.com/
articles/future_2003.html

 “Web 2.0: Compact Definition?” October 2005, http://radar.oreilly.com/archives/2005/10/
web_20_compact_definition.html

 Por, George. “The meaning and accelerating the emergence of CI.” April 2004, http://www.
community-intelligence.com/blogs/public/archives/000251.html

 Surowiecki, James. The Wisdom of Crowds. 2005. Anchor
 Web 3.0. Wikipedia, http://en.wikipedia.org/wiki/

Web_3.0#An_evolutionary_path_to_artificial_intelligence

http://opengardensblog.futuretext.com/archives/2006/04/tim_o_reillys_s.html
http://opengardensblog.futuretext.com/archives/2006/04/tim_o_reillys_s.html
http://infotangle.blogsome.com/2006/01/13/the-hype-and-the-hullabaloo-of-web-20/
http://infotangle.blogsome.com/2006/01/13/the-hype-and-the-hullabaloo-of-web-20/
http://www.gerrymcgovern.com/nt/2006/nt-2006-04-17-collective-intelligence.htm
http://news.bbc.co.uk/1/hi/technology/4737671.stm
http://news.bbc.co.uk/1/hi/technology/4737671.stm
http://www.fullcirc.com/community/communitymanual.htm
http://www.oreilly.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreilly.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://tim.oreilly.com/articles/future_2003.html
http://tim.oreilly.com/articles/future_2003.html
http://radar.oreilly.com/archives/2005/10/web_20_compact_definition.html
http://radar.oreilly.com/archives/2005/10/web_20_compact_definition.html
http://www.community-intelligence.com/blogs/public/archives/000251.html
http://www.community-intelligence.com/blogs/public/archives/000251.html
http://en.wikipedia.org/wiki/Web_3.0#An_evolutionary_path_to_artificial_intelligence
http://en.wikipedia.org/wiki/Web_3.0#An_evolutionary_path_to_artificial_intelligence

Learning
 from user interactions
Through their interactions with your web application, users provide a rich set of
information that can be converted into intelligence. For example, a user rating an
item provides crisp quantifiable information about the user’s preferences. Aggre-
gating the rating across all your users or a subset of relevant users is one of the sim-
plest ways to apply collective intelligence in your application.

 There are two main sources of information that can be harvested for intelligence.
First is content-based—based on information about the item itself, usually keywords or
phrases occurring in the item. Second is collaborative-based—based on the interac-
tions of users. For example, if someone is looking for a hotel, the collaborative fil-
tering engine will look for similar users based on matching profile attributes and find

This chapter covers
■ Architecture for applying intelligence
■ Basic technical concepts behind collective intelligence
■ The many forms of user interaction
■ A working example of how user interaction is

converted into collective intelligence
20

21Architecture for applying intelligence
hotels that these users have rated highly. Throughout the chapter, the theme of using
content and collaborative approaches for harvesting intelligence will be reinforced.

 First and foremost, we need to make sure that you have the right architecture in
place for embedding intelligence in your application. Therefore, we begin by describ-
ing the ideal architecture for applying intelligence. This will be followed by an intro-
duction to some of the fundamental concepts needed to understand the underlying
technology. You’ll be introduced to the fields of content and collaborative filtering
and how intelligence is represented and extracted from text. Next, we review the
many forms of user interaction and how that interaction translates into collective
intelligence for your application. The main aim of this chapter is to introduce you to
the fundamental concepts that we leverage to build the underlying technology in
parts 2 and 3 of the book. A strong foundation leads to a stronger house, so make sure
you understand the fundamental concepts introduced in this chapter before proceed-
ing on to later chapters.

2.1 Architecture for applying intelligence
All web applications consist, at a minimum, of an application server or a web
server—to serve HTTP or HTTPS requests sent from a user’s browser—and a database
that stores the persistent state of the application. Some applications also use a messag-
ing server to allow asynchronous processing via an event-driven Service-Oriented
Architecture (SOA). The best way to embed intelligence in your application is to build
it as a set of services—software components that each have a well-defined interface.

 In this section, we look at the two kinds of intelligence-related services and their
advantages and disadvantages.

2.1.1 Synchronous and asynchronous services

For embedding intelligence in your application, you need to build two kinds of ser-
vices: synchronous and asynchronous services.

 Synchronous services service requests from a client in a synchronous manner: the
client waits till the service returns the response back. These services need to be fast,
since the longer they take to process the request, the longer the wait time for the cli-
ent. Some examples of this kind of a service are the runtime of an item-recommenda-
tion engine(a service that provides a list of items related to an item of interest for a
user), a service that provides a model of user’s profile, and a service that provides
results from a search query.

 For scaling and high performance, synchronous services should be stateless—the
service instance shouldn’t maintain any state between service requests. All the informa-
tion that the service needs to process a request should be retrieved from a persistent
source, such as a database or a file, or passed to it as a part of the service request. These
services also use caching to avoid round-trips to the external data store. These services
can be in the same JVM as the client code or be distributed in their own set of machines.
Due to their stateless nature, you can have multiple instances of the services running

22 CHAPTER 2 Learning from user interactions
servicing requests. Typically, a load balancer is used in front of the multiple instances.
These services scale nearly linearly, neglecting the overhead of load-balancing among
the instances.

 Asynchronous services typically run in the background and take longer to process.
Examples of this kind of a service include a data aggregator service(a service that
crawls the web to identify, gather, and classify relevant information) as well as a service
that learns the profile of a user through a predictive model or clustering, or a search
engine indexing content. Asynchronous learning services need to be designed to be
stateless: they receive a message, process it, and then work on the next message. There
can be multiple instances of these services all listening to the same queue on the mes-
saging server. The messaging server takes care of load balancing between the multiple
instances and will queue up the messages under load.

 Figure 2.1 shows an example of the two kinds of services. First, we have the run-
time API that services client requests synchronously, using typically precomputed
information about the user and other derived information such as search indexes or
predictive models. The intelligence-learning service is an asynchronous service that
analyzes information from various types of content along with user-interaction infor-
mation to create models that are used by the runtime API. Content could be either
contained within your system or retrieved from external sources, such as by searching
the blogosphere or by web crawling.

 Table 2.1 lists some of the services that you’ll be able to build in your application
using concepts that we develop in this book.

 As new information comes in about your users, their interactions, and the content
in your system, the models used by the intelligence services need to be updated. There
are two approaches to updating the models: event-driven and non-event-driven. We dis-
cuss these in the next two sections.

Run-time API

Intelligence Learning
Service

User Information
Profile, Transaction

Recommendation Engine
Predictive Models, Indexes

Content Content Content

Articles Video Blogs

Real-Time Events

Service Requests
Synchronous
Services

Asynchronous
Services

Figure 2.1 Synchronous and asynchronous learning services

23Architecture for applying intelligence
2.1.2 Real-time learning in an event-driven system

As users interact on your site, perhaps by looking at an article or video, by rating a
question, or by writing a blog entry, they’re providing your application with informa-
tion that can be converted into intelligence about them. As shown in figure 2.2, you
can develop near–real-time intelligence in your application by using an event-driven
Service-Oriented Architecture (SOA).

Table 2.1 Summary of services that a typical application-embedding intelligence contains

Service Processing type Description

Intelligence Learning
Service

Asynchronous This service uses user-interaction information to build
a profile of the user, update product relevance tables,
transaction history, and so on.

Data Aggregator/
Classifier Service

Asynchronous This service crawls external sites to gather informa-
tion and derives intelligence from the text to classify it
appropriately.

Search Service Asynchronous Indexing
Synchronous
Results

Content—both user-generated and professionally
developed—is indexed for search. This may be
combined with user profile and transaction history
to create personalized search results.

User Profile Synchronous Runtime model of user’s profile that will be used for
personalization.

Item Relevance
Lookup Service

Synchronous Runtime model for looking up related items for a given
item.

Intelligence
Learning
Service

Messaging
Server
(JMS)

Update User
Transaction History

Http Request

Http Response

User Interaction:
Action + Quality

Action Controller

Update
User Profile
Recommendation
Engine

Profile Data
Product Relevance
Transaction History
Content

Use User Profile,
Relevance for
Personalization

Web Server

Database

Asynchronous
Services

User Interaction Event

Data
Aggregator/
Classifier
Service

WEB

Update Content

Figure 2.2 Architecture for embedding and deriving intelligence in an event-driven system

24 CHAPTER 2 Learning from user interactions
The web server receives a HTTP request from the user. Available locally in the same JVM
is a service for updating the user transaction history. Depending on your architecture
and your needs, the service may simply add the transaction history item to its memory
and periodically flush the items out to either the database or to a messaging server.

 Real-time processing can occur when a message is sent to the messaging server, which
then passes this message out to any interested intelligence-learning services. These ser-
vices will process and persist the information to update the user’s profile, update the rec-
ommendation engine, and update any predictive models.1 If this learning process is
sufficiently fast, there’s a good chance that the updated user’s profile will be reflected
in the personalized information shown to the user the next time she interacts.

NOTE As an alternative to sending the complete user transaction data as a mes-
sage, you can also first store the message and then send a lightweight
object that’s a pointer to the information in the database. The learning
service will retrieve the information from the database when it receives
the message. If there’s a significant amount of processing and data trans-
formation that’s required before persistence, then it may be advanta-
geous to do the processing in the asynchronous learning service.

2.1.3 Polling services for non–event-driven systems

If your application architecture doesn’t use a messaging infrastructure—for example,
if it consists solely of a web server and a database—you can write user transaction his-
tory to the database. In this case, the learning services use a poll-based mechanism to
periodically process the data, as shown in figure 2.3.

1 The open source Drools complex-event-processing (CEP) framework could be useful for implementing a rule-
based event-handling intelligent-learning service; see http://blog.athico.com/2007/11/pigeons-complex-
event-processing-and.html.

Intelligence
Learning
Service

Update User
Transaction HistoryHttp Request

Http Response

User Interaction:
Action + Quality

Action Controller
Update
User Profile
Recommendation
Engine

Profile Data
Product Relevance
Transaction History
Content

Use User Profile,
Relevance for
Personalization

Web Server

Database

Polling
Services

Data
Aggregator/
Classifier
Service

WEB

Crawl Web,
External Data

Update Content

Figure 2.3 Architecture for embedding intelligence in a non-event-driven system

http://blog.athico.com/2007/11/pigeons-complex-event-processing-and.html
http://blog.athico.com/2007/11/pigeons-complex-event-processing-and.html

25Basics of algorithms for applying CI
So far we’ve looked at the two approaches for building intelligence learning ser-
vices—event-driven and non–event-driven. Let’s now look at the advantages and disad-
vantages of each of these approaches.

2.1.4 Advantages and disadvantages of event-based
and non–event-based architectures

An event-driven SOA architecture is recommended for learning and embedding intel-
ligence in your application because it provides the following advantages:

■ It provides more fine-grained real-time processing — every user transaction can be processed
separately. Conversely, the lag for processing data in a polling framework is depen-
dent on the polling frequency. For some tasks such as updating a search index
with changes, where the process of opening and closing a connection to the index
is expensive, batching multiple updates in one event may be more efficient.

■ An event-driven architecture is a more scalable solution. You can scale each of the ser-
vices independently. Under peak conditions, the messaging server can queue
up messages. Thus the maximum load generated on the system by these ser-
vices will be bounded. A polling mechanism requires more continuous over-
head and thus wastes resources.

■ An event-driven architecture is less complex to implement because there are standard mes-
saging servers that are easy to integrate into your application. Conversely, multiple
instances of a polling service need to coordinate which rows of information are
being processed among themselves. In this case, be careful to avoid using
select for update to achieve this locking, because this often causes deadlocks.
The polling infrastructure is often a source of bugs.

On the flip side, if you don’t currently use a messaging infrastructure in your system,
introducing a messaging infrastructure in your architecture can be a nontrivial task.
In this case, it may be better to begin with building the learning infrastructure using a
poll-based non–event-driven architecture and then upgrading to an event-driven
architecture if the learning infrastructure doesn’t meet your business requirements.

 Now that we have an understanding of the architecture to apply intelligence in
your application, let’s next look at some of the fundamental concepts that we need to
understand in order to apply CI.

2.2 Basics of algorithms for applying CI
In order to correlate users with content and with each other, we need a common lan-
guage to compute relevance between items, between users, and between users and
items. Content-based relevance is anchored in the content itself, as is done by infor-
mation retrieval systems. Collaborative-based relevance leverages the user interaction
data to discern meaningful relationships. Also, since a lot of content is in the form of
unstructured text, it’s helpful to understand how metadata can be developed from
unstructured text. In this section, we cover these three fundamental concepts of learn-
ing algorithms.

26 CHAPTER 2 Learning from user interactions
 We begin by abstracting the various types of content, so that the concepts and algo-
rithms can be applied to all of them.

2.2.1 Users and items

As shown in figure 2.4, most applications generally consist of users and items. An item is
any entity of interest in your application. Items may be articles, both user-generated
and professionally developed; videos; photos; blog entries; questions and answers
posted on message boards; or products and services sold in your application. If your
application is a social-networking application, or you’re looking to connect one user
with another, then a user is also a type of item.

Associated with each item is metadata, which may be in the form of professionally
developed keywords, user-generated tags, keywords extracted by an algorithm after
analyzing the text, ratings, popularity ranking, or just about anything that provides a
higher level of information about the item and can be used to correlate items
together. Think about metadata as a set of attributes that help qualify an item.

 When an item is a user, in most applications
there’s no content associated with a user (unless
your application has a text-based descriptive profile
of the user). In this case, metadata for a user will
consist of profile-based data and user-action based
data. Figure 2.5 shows the three main sources of
developing metadata for an item (remember a user
is also an item). We look at these three sources next.
ATTRIBUTE-BASED

Metadata can be generated by looking at the attributes of the user or the item. The
user attribute information is typically dependent on the nature of the domain of the
application. It may contain information such as age, sex, geographical location, pro-
fession, annual income, or education level. Similarly, most nonuser items have attri-
butes associated with them. For example, a product may have a price, the name of the

Item Metadata
0, ..*

Article Photo Video Blog Product

Extends

Keywords Tags User
Transaction Rating Attributes

Extends

Users

Purchase, Contribute,
Recommend, View,
Tag, Rate, Save, Bookmark

has0, ..*

Figure 2.4 A user
interacts with items, which
have associated metadata.

Metadata

User-Action
Based

Content
Based

Attribute
Based

Figure 2.5 The three sources for
generating metadata about an item

27Basics of algorithms for applying CI
author or manufacturer, the geographical location where it’s available, the creation or
manufacturing date, and so on.
CONTENT-BASED

Metadata can be generated by analyzing the content of a document. As we see in the
following sections, there’s been a lot of work done in the area of information retrieval
and text mining to extract metadata associated with unstructured text. The title, subti-
tles, keywords, frequency counts of words in a document and across all documents of
interest, and other data provide useful information that can then be converted into
metadata for that item.
USER-ACTION-BASED

Metadata can be generated by analyzing the interactions of users with items. User
interactions provide valuable insight into preferences and interests. Some of the inter-
actions are fairly explicit in terms of their intentions, such as purchasing an item, con-
tributing content, rating an item, or voting. Other interactions are a lot more difficult
to discern, such as a user clicking on an article and the system determining whether
the user liked that item or not. This interaction can be used to build metadata about
the user and the item. This metadata provides important information as to what kind
of items the user would be interested in; which set of users would be interested in a
new item, and so on.

 Think about users and items having an associated vector of metadata attributes.
The similarity or relevance between two users or two items or a user and item can be
measured by looking at the similarity between the two vectors. Since we’re interested
in learning about the likes and dislikes of a user, let’s next look at representing infor-
mation related to a user.

2.2.2 Representing user information

A user’s profile consists of a number of attributes—inde-
pendent variables that can be used to describe the item of
interest. As shown in figure 2.6, attributes can be numeri-
cal—have a continuous set of values, for example, the age
of a user—or nominal—have a nonnumerical value or a set
of string values associated with them. Further, nominal
attributes can be either ordinal—enumerated values that
have ordering in them, such as low, medium, and high—or
categorical—enumerated values with no ordering, such as
the color of one’s eyes.

 All attributes are not equal in their predicting capabilities. Depending on the kind
of learning algorithms used, the attributes can be normalized—converted to a scale of
[0-1]. Different algorithms use either numerical or nominal attributes as inputs. Fur-
ther, numerical and nominal attributes can be converted from one format to another
depending on the kind of algorithms used. For example, the age of a user can be con-
verted to a nominal attribute by creating buckets, say: “Teenager” for users under the

Attributes

Numerical Nominal

Ordinal Categorical

Figure 2.6 Attribute
hierarchy of a user profile

28 CHAPTER 2 Learning from user interactions
age of 18, “Young Person” for those between 18 and 25, and so on. Table 2.2 has a list
of user attributes that may be available in your application.

 In addition to user attributes, the user’s interactions with your application give you
important data that can be used to learn about your user, find similar users (cluster-
ing), or make a prediction. The number of times a user has logged in to your applica-
tion within a period of time, his average session time, and the number of items
purchased are all examples of derived attributes that can be used for clustering and
building predictive models.

 Through their interactions, users provide a rich set of information that can be har-
vested for intelligence. Table 2.3 summarizes some of the ways users provide valuable
information that can be used to add intelligence to your application.

Table 2.2 Examples of user-profile attributes

Attribute Type Example Comments

Age Numeric 26 years old User typically provides birth date.

Sex Categorical Male, Female

Annual Income Ordinal or Numeric Between 50-100K
or 126K

Geographical
Location

Categorical can be
converted to numerical

Address, city,
state, zip

The geo-codes associated with the loca-
tion can be used as a distance measure
to a reference point.

Table 2.3 The many ways users provide valuable information through their interactions

Technique Description

Transaction history The list of items that a user has bought in the past
Items that are currently in the user’s shopping cart or favorites list

Content visited The type of content searched and read by the user
The advertisements clicked

Path followed How the user got to a particular piece of content—whether directly from an exter-
nal search engine result or after searching in the application
The intent of the user—proceeding to the e-commerce pages after researching a
topic on the site

Profile selections The choices that users make in selecting the defaults for their profiles and profile
entries; for example, the default airport used by the user for a travel application

Feedback to polls
and questions

If the user has responded to any online polls and questions

Rating Rating of content

Tagging Associating tags with items

Voting, bookmarking,
saving

Expressing interest in an item

29Basics of algorithms for applying CI
We’ve looked at how various kinds of attributes can be used to represent a user’s pro-
file and the use of user-interaction data to learn about the user. Next, let’s look at how
intelligence can be generated by analyzing content and by analyzing the interactions
of the users. This is just a quick look at this fairly large topic and we build on it
throughout the book.

2.2.3 Content-based analysis and collaborative filtering

User-centric applications aim to make the application more valuable for users by
applying CI to personalize the site. There are two basic approaches to personalization:
content-based and collaborative-based.

 Content-based approaches analyze the content to build a representation for the
content. Terms or phrases (multiple terms in a row) appearing in the document are
typically used to build this representation. Terms are converted into their basic form
by a process known as stemming. Terms with their associated weights, commonly
known as term vectors, then represent the metadata associated with the text. Similarity
between two content items is measured by measuring the similarity associated with
their term vectors.

 A user’s profile can also be developed by analyzing the set of content the user
interacted with. In this case, the user’s profile will have the same set of terms as the
items, enabling you to compute the similarities between a user and an item. Content-
based recommendation systems do a good job of finding related items, but they can’t
predict the quality of the item—how popular the item is or how a user will like the
item. This is where collaborative-based methods come in.

 A collaborative-based approach aims to use the information provided by the inter-
actions of users to predict items of interest for a user. For example, in a system where
users rate items, a collaborative-based approach will find patterns in the way items
have been rated by the user and other users to find additional items of interest for a
user. This approach aims to match a user’s metadata to that of other similar users and
recommend items liked by them. Items that are liked by or popular with a certain seg-
ment of your user population will appear often in their interaction history—viewed
often, purchased often, and so forth. The frequency of occurrence or ratings pro-
vided by users are indicative of the quality of the item to the appropriate segment of
your user population. Sites that use collaborative filtering include Amazon, Google,
and Netflix. Collaborative-based methods are language independent, and you don’t
have to worry about language issues when applying the algorithm to content in a dif-
ferent language.

 There are two main approaches in collaborative filtering: memory-based and
model-based. In memory-based systems, a similarity measure is used to find similar
users and then make a prediction using a weighted average of the ratings of the simi-
lar users. This approach can have scalability issues and is sensitive to data sparseness. A
model-based approach aims to build a model for prediction using a variety of
approaches: linear algebra, probabilistic methods, neural networks, clustering, latent
classes, and so on. They normally have fast runtime predicting capabilities. Chapter 12

30 CHAPTER 2 Learning from user interactions
covers building recommendation systems in detail; in this chapter we introduce the
concepts via examples.

 Since a lot of information that we deal with is in the form of unstructured text, it’s
helpful to review some basic concepts about how intelligence is extracted from
unstructured text.

2.2.4 Representing intelligence from unstructured text

This section deals with developing a representation for unstructured text by using the
content of the text. Fortunately, we can leverage a lot of work that’s been done in the
area of information retrieval. This section introduces you to terms and term vectors,
used to represent metadata associated with text. Section 4.3 presents a detailed work-
ing example on this topic, while chapter 8 develops a toolkit that you can use in your
application for representing unstructured text. Chapter 3 presents a collaborative-
based approach for representing a document using user-tagging.

 Now let’s consider an example where the text being analyzed is the phrase “Collec-
tive Intelligence in Action.”

 In its most basic form, a text document consists of terms—words that appear in the
text. In our example, there are four terms: Collective, Intelligence, in, and Action. When
terms are joined together, they form phrases. Collective Intelligence and Collective Intelli-
gence in Action are two useful phrases in our document.

 The Vector Space Model representation is one of the most commonly used methods
for representing a document. As shown in figure 2.7, a document is represented by a
term vector, which consists of terms appearing in the document and a relative weight
for each of the terms. The term vector is one representation of metadata associated
with an item. The weight associated with each term is a product of two computations:
term frequency and inverse document frequency.

 Term frequency (TF) is a count of how often a term appears. Words that appear often
may be more relevant to the topic of interest. Given a particular domain, some words
appear more often than others. For example, in a set of books about Java, the word Java
will appear often. We have to be more discriminating to find items that have these less-
common terms: Spring, Hibernate, and Intelligence. This is the motivation behind inverse
document frequency (IDF). IDF aims to boost terms that are less frequent. Let the total num-
ber of documents of interest be n, and let ni be the number of times a given term
appears across the documents. Then IDF for a term is computed as follows:

Note that if a term appears in all documents, then
its IDF is log(1) which is 0.

 Commonly occurring terms such as a, the, and in
don’t add much value in representing the docu-
ment. These are commonly known as stop words and
are removed from the term vector. Terms are also

idfi
n
ni⎝ ⎠

⎛ ⎞log=

Term
wt

Term
wt

Term
wtText

Term Vector

Figure 2.7 Term vector representation
of text

31Basics of algorithms for applying CI
converted to lowercase. Further, words are stemmed—brought to their root form—to
handle plurals. For example, toy and toys will be stemmed to toi. The position of words,
for example whether they appear in the title, keywords, abstract, or the body, can also
influence the relative weights of the terms used to represent the document. Further, syn-
onyms may be used to inject terms into the representation.

 Figure 2.8 shows the steps involved in analyzing text. These steps are

1 Tokenization—Parse the text to generate terms. Sophisticated analyzers can also
extract phrases from the text.

2 Normalize—Convert them into a normalized form such as converting text into
lower case.

3 Eliminate stop words—Eliminate terms that appear very often.
4 Stemming—Convert the terms into their stemmed form to handle plurals.

A large document will have more occurrences of a term than a similar document of
shorter length. Therefore, within the term vector, the weights of the terms are nor-
malized, such that the sum of the squared weights for all the terms in the term vector
is equal to one. This normalization allows us to compare documents for similarities
using their term vectors, which is discussed next.

 The previous approach for generating metadata is content based. You can also
generate metadata by analyzing user interaction with the content—we look at this in
more detail in sections 2.3 and 2.4; chapter 3 deals with developing metadata from
user tagging.

 So far we’ve looked at what a term vector is and have some basic knowledge of how
they’re computed. Let’s next look at how to compute similarities between them. An
item that’s very similar to another item will have a high value for the computed simi-
larity metric. An item whose term vector has a high computed similarity to that of a
user’s will be very relevant to a user—chances are
that if we can build a term vector to capture the
likes of a user, then the user will like items that have
a similar term vector.

2.2.5 Computing similarities

A term vector is a vector where the direction is the
magnitude of the weights for each of the terms. The
term vector has multiple dimensions—thousands to
possibly millions, depending on your application.
Multidimensional vectors are difficult to visualize,
but the principles used can be illustrated by using a
two-dimensional vector, as shown in figure 2.9.

Tokenization Normalize Eliminate
Stop Words Stemming Figure 2.8 Typical steps involved in

analyzing text

1

1

X

Y

v1

v2

1x 1y

2x 2y

()212
1 yx +Length =

()
() ()222

2
2
1

2
1

2121

yxyx

yyxx

++

⋅+⋅
Similarity =

θ

Normalized vector = ()[]112
1

2
1

1 yx
yx +

Figure 2.9 Two dimensional
vectors, v1 and v2

32 CHAPTER 2 Learning from user interactions
 Given a vector representation, we normalize the vector such that its length is of
size 1 and compare vectors by computing the similarity between them. Chapter 8
develops the Java classes for doing this computation. For now, just think of vectors as a
means to represent information with a well-developed math to compute similarities
between them.

 So far we’ve looked at the use of term vectors to represent metadata associated
with content. We’ve also looked at how to compute similarities between term vectors.
Now let’s take this one step forward and introduce the concept of a dataset. Algo-
rithms use data as input for analysis. This data consists of multiple instances repre-
sented in a tabular form. Based on how data is populated in the table, we can classify
the dataset into two forms: densely populated, or high-dimensional sparsely populated
datasets—similar in characteristics to a term vector.

2.2.6 Types of datasets

To illustrate the two forms of datasets used as input for learning by algorithms, let’s
consider the following example.

 Let there be three users—John, Joe, and Jane. Each has three attributes: age, sex,
and average number of minutes spent on the site. Table 2.4 shows the values for the
various attributes for these users. This data can be used for clustering2 and/or to build
a predictive model.3 For example, similar users according to age and/or sex might be
a good predictor of the number of minutes a user will spend on the site.

 In this example dataset, the age attribute is a good predictor for number of minutes
spent—the number of minutes spent is inversely proportional to the age. The sex attri-
bute has no effect in the prediction. In this made-up example, a simple linear model is
adequate to predict the number of minutes spent (minutes spent = 50 – age of user).

This is a densely populated dataset. Note that the number of rows in the dataset will
increase as we add more users. It has the following properties:

■ It has more rows than columns —The number of rows is typically a few orders of
magnitude more than the number of columns. (Note that to keep things sim-
ple, the number of rows and columns is the same in our example.)

■ The dataset is richly populated —There is a value for each cell.

2 Chapter 9 covers clustering algorithms.
3 Chapter 10 deals with building predictive models.

Age Sex
Number of minutes per
day spent on the site

John 25 M 25

Joe 30 M 20

Jane 20 F 30
Table 2.4 Dataset with
small number of attributes

33Basics of algorithms for applying CI
The other kind of dataset (high-dimensional, sparsely populated) is a generalization
of the term vector representation. To understand this dataset, consider a window
of time such as the past week. We consider the set of users who’ve viewed any of
the videos on our site within this timeframe. Let n be the total number of videos in
our application, represented as columns, while the users are represented as rows.
Table 2.5 shows the dataset created by adding a 1 in the cell if a user has viewed
a video. This representation is useful to find similar users and is known as the User-
Item matrix.

Alternatively, when the users are represented as columns and the videos as rows, we
can determine videos that are similar based on the user interaction: “Users who have
viewed this video have also viewed these other videos.” Such an analysis would be help-
ful in finding related videos on a site such as YouTube. Figure 2.10 shows a screenshot
of such a feature at YouTube. It shows related videos for a video.

Video 1 Video 2 … … Video n

John 1

Joe 1 1

Jane 1

Figure 2.10 Screenshot from YouTube showing related videos for a video

Table 2.5 Dataset with
large number of attributes

34 CHAPTER 2 Learning from user interactions
This dataset has the following properties:

■ The number of columns is large — For example, the number of products in a site
like Amazon.com is in millions, as is the number of videos at YouTube.

■ The dataset is sparsely populated with nonzero entries in a few columns.
■ You can visualize this dataset as a multidimensional vector — Columns correspond to

the dimensions and the cell entry corresponds to the weight associated for that
dimension.

We develop a toolkit to analyze this kind of dataset in chapter 8. The dot product or
cosine between two vectors is used as a similarity metric to compare two vectors.

 Note the similarity of this dataset with the term vector we introduced in section 2.2.3.
Let there be m terms that occur in all our documents. Then the term vectors corre-
sponding to all our documents have the same characteristics as the previous dataset, as
shown in table 2.6.

Now that we have a basic understanding of how metadata is generated and repre-
sented, let’s look at the many forms of user interaction in your application and how
they are converted to collective intelligence.

2.3 Forms of user interaction
To extract intelligence from a user’s interaction in your application, it isn’t enough to
know what content the user looked at or visited. You also need to quantify the quality
of the interaction. A user may like the article or may dislike it, these being two
extremes. What one needs is a quantification of how the user liked the item relative to
other items.

 Remember, we’re trying to ascertain what kind of information is of interest to the
user. The user may provide this directly by rating or voting for an article, or it may need
to be derived, for example, by looking at the content that the user has consumed. We
can also learn about the item that the user is interacting with in the process.

 In this section, we look at how users provide quantifiable information through
their interactions; in section 2.4 we look at how these interactions fit in with collec-
tive intelligence. Some of the interactions such as ratings and voting are explicit in
the user’s intent, while other interactions such as using clicks are noisy—the intent
of the user isn’t known perfectly and is implicit. If you’re thinking of making your
application more interactive or intelligent, you may want to consider adding some of
the functionality mentioned in this section. We also look at the underlying persis-
tence architecture that’s required to support the functionality. Let’s begin with rat-
ings and voting.

Term 1 Term 2 Term m

Document 1 0.8 0.6

Document 2 0.7 0.7

Document 3 1

Table 2.6 Sparsely populated
dataset corresponding to term
vectors

35Forms of user interaction
2.3.1 Rating and voting

Asking the user to rate an item of interest is an explicit way of getting feedback on
how well the user liked the item. The advantage with a user rating content is that the
information provided is quantifiable and can be used directly.

 It’s interesting to note that most ratings in a system tend to be positive, especially
since people rate items that they’ve bought/interacted with and they typically buy/
interact with items that they like.

 Next, let’s look at how you can build this functionality in your application.
PERSISTENCE MODEL4

Figure 2.11 shows the persistence model for storing ratings. Let’s introduce two enti-
ties: user and item. user_item_rating is a mapping table that has a composite key,
consisting of the user ID and content ID. A brief look at the cardinality between the
entities show that

■ Each user may rate 0 or more items.
■ Each rating is associated with only one user.
■ An item may contain 0 or more ratings.
■ Each rating is associated with only one item.

Based on your application, you may alternatively want to also classify the items in your
application. It’s also helpful to have a generic table to store the ratings associated with
the items. Computing a user’s average rating for an item or item type is then a simple
database query.

 In this design, answers to the following questions amount to a simple database query:

■ What is the average rating for a given item?
■ What is the average rating for a given item from users who are between the ages

of 25 and 35?
■ What are the top 10 rated items?

The last query can be slow, but faster performance can be obtained by having a
user_item_rating_statistic table, as shown in figure 2.10. This table gets updated by
a trigger every time a new row is inserted in the user_item_rating table. The average

4 The code to create the tables, populate the database with test data, and run the queries is available from the
code download site for this book.

item_id
day_id
average_rating
sum_rating
number

int unsigned(10)
int unsigned(10)

int unsigned(10)
double(22)
double(22)

user_item_rating_statistic

user_id int unsigned(10)
item_id int unsigned(10)
rating double(22)
create_date timestamp(19)

user_item_rating

item_id=item_id day_id=day_iditem_id=item_iduser_id=user_id

int unsigned(10)
day timestamp(19)
day_id

days
int unsigned(10)item_id

name varchar(50)

item

int unsigned(10)user_id
name varchar(50)

user

trigger

Figure 2.11
Persistence of
ratings in a table
that stores each
user’s ratings in
a separate table

36 CHAPTER 2 Learning from user interactions
is precomputed and is calculated by dividing the cumulative sum by the number of rat-
ings. If you want to trend the ratings of an item on a daily basis, you can augment the
user_item_rating_statistic to have the day as another key.
VOTING—“DIGG IT”

Most applications that allow users to rate use a scale from zero to five. Allowing a user
to vote is another way to involve and obtain useful information from the user. Digg, a
website that allows users to contribute and vote on interesting articles, uses this idea.
As shown in figure 2.12, a user can either digg an article, casting a positive vote, or bury
it, casting a negative vote. There are a number of heuristics applied to selecting which
articles make it to the top, some being the number of positive votes received by the
article along with the date the article was submitted in Digg.

Voting is similar to rating. However, a vote can have only two values—1 for a positive
vote and -1 for a negative vote.

2.3.2 Emailing or forwarding a link

As a part of viral marketing efforts, it’s com-
mon for websites to allow users to email or
forward the contents of a page to others.
Similar to voting, forwarding the content to
others can be considered a positive vote for
the item by the user. Figure 2.13 is a screen-
shot from The Wall Street Journal showing how
a user can forward an article to another user.

2.3.3 Bookmarking and saving

Online bookmarking services such as del.
icio.us and spurl.net allow users to store and
retrieve URLs, also known as bookmarks.
Users can discover other interesting links
that other users have bookmarked through

Figure 2.12 At Digg.com, users are allowed to vote on how they like an article—“digg it” is a positive
vote, while “Bury” is a negative vote.

Figure 2.13 Screenshot from The Wall Street
Journal (wsj.com) that shows how a user can
forward/email an article to another user

37Forms of user interaction
recommendations, hot lists, and other such features. By bookmarking URLs, a user is
explicitly expressing interest in the material associated with the bookmark. URLs that are
commonly bookmarked bubble up higher in the site.

 The process of saving an item or adding it to a list is similar to bookmarking and
provides similar information. Figure 2.14 is an example from The New York Times,
where a user can save an item of interest. As shown, this can then be used to build a
recommendation engine where a user is shown related items that other users who
saved that item have also saved.

If a user has a large number of bookmarks, it can become cumbersome for the user to
find and manage bookmarked or saved items. For this reason, applications allow their
users to create folders — a collection of items bookmarked or saved together. As shown
in figure 2.15, folders follow the composite design
pattern,5 where they’re composed of bookmarked
items. A folder is just another kind of item in your
application that can be shared, bookmarked, and
rated in your application. Based on their compo-
sition, folders have metadata associated with them.

 Next, let’s look at how a user purchasing an
item also provides useful information.

2.3.4 Purchasing items

In an e-commerce site, when users purchase items, they’re casting an explicit vote of
confidence in the item—unless the item is returned after purchase, in which case it’s a
negative vote. Recommendation engines, for example the one used by Amazon (Item-
to-Item recommendation engine; see section 12.4.1) can be built from analyzing the
procurement history of users. Users that buy similar items can be correlated and items
that have been bought by other users can be recommended to a user.

2.3.5 Click-stream

So far we’ve looked at fairly explicit ways of determining whether a user liked or dis-
liked a particular item, through ratings, voting, forwarding, and purchasing items.

5 Refer to the Composite Pattern in the Gang of Four design patterns.

http://timesfile.nytimes.com/store

Recommendation
based on what
others saved

Item saved

Figure 2.14 Saving an item
to a list (NY Times.com)

Item

Bookmark Folder

0 .. *

Figure 2.15 Composite pattern
for organizing bookmarks together

http://timesfile.nytimes.com/store

38 CHAPTER 2 Learning from user interactions
When a list of items is presented to a user, there’s a good chance that the user will
click on one of them based on the title and description. But after quickly scanning the
item, the user may find the item to be not relevant and may browse back or search for
other items.

 A simple way to quantify an article’s relevance is to record a positive vote for any
item clicked. This approach is used by Google News to personalize the site (see sec-
tion 12.4.2). To further filter out noise, such as items the user didn’t really like, you
could look at the amount of time the user spent on the article. Of course, this isn’t fail
proof. For example, the user could have left the room to get some coffee or been
interrupted while looking at the article. But on average, simply looking at whether an
item was visited and the time spent on it provides useful information that can be
mined later. You can also gather useful statistics from this data:

■ What is the average time a user spends on a particular item?
■ For a user, what is the average time spent on any given article?

One of the ways to validate the data and clear
out outliers is to use a validation window. To
build a validation window, treat the amount
of time spent by a user as a normal distribu-
tion (see figure 2.16) and compute the mean
and standard deviation from the samples.

 Let’s demonstrate this with a simple
example—it’s fictitious, but illustrates the
point well. Let the amount of time spent by
nine readers on an article be [5, 47, 50, 55,
47, 54, 100, 45, 50] seconds. Computing the
mean is simple (add them all up and divide
it by nine, the number of samples); it’s 50.33
seconds. Next, let’s compute the standard
deviation. For this, take the difference of each of the samples from its mean and square
it. This leads to [2055.11, 11.11, 0.11, 21.78, 11.11, 13.44, 2466.78, 28.44, 0.11]. Add
them up and divide it by eight, the number of samples minus one. This gives us 576, and
the square root of this is the standard deviation, which comes out to be 24. Now you can
create a validation window two or three times the standard deviation from the mean. For
our example, we take two times the standard deviation, which gives us a confidence level
of 95 percent. For our example, this is [2.33 98]. Anything outside this range is an outlier.

 So we flag the seventh sample of 100 seconds as an outlier—perhaps the user had
stepped out or was interrupted while reading the article. Next, continue the same pro-
cess with the remaining eight samples [5, 47, 50, 55, 47, 54, 45, 50]. The new mean and
standard deviation is 44.125 and 16.18. The new confidence window is [11.76 76.49].
The first sample is an outlier; perhaps the user didn’t find the article relevant.

 Now let’s remove this outlier and recompute the validation window for the sample
set of [47, 50, 55, 47, 54, 45, 50]. The new mean and standard deviation is 49.71 and 3.73

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

-6 -4 -2 0 2 4 6

Figure 2.16 A normal distribution with a mean
of 0 and standard deviation of 1

39Forms of user interaction
respectively. The new confidence window is [42.26 57.17]. Most users will spend time
within this window. Users that spent less time were probably not interested in the con-
tent of the article.

 Of course, if you wanted to get more sophisticated (and a lot more complex), you
could try to model the average time that a user spends on an item and correlate it with
average time spent by a typical user to shrink or expand the validation window. But for
most applications, the preceding process of validation window should work well. Or if
you want to keep things even simpler, simply consider whether the article has been vis-
ited, irrespective of the time spent6 reading it.

2.3.6 Reviews

Web 2.0 is all about connecting people with similar people. This similarity may be
based on similar tastes, positions, opinions, or geographic location. Tastes and opin-
ions are often expressed through reviews and recommendations. These have the
greatest impact on other users when

■ They’re unbiased
■ The reviews are from similar users
■ They’re from a person of influence

Depending on the application, the information provided by a user may be available to
the entire population of users, or may be privately available only to a select group of
users. This is especially the case for software-as-a-service (SaaS) applications, where a
company or enterprise subscribing to the service forms a natural grouping of users. In
such applications, information isn’t usually shared across domains. The information is
more contextually relevant to users within the company, anyway.

 Perhaps the biggest reasons why people review items and share their experiences
are to be discovered by others and for boasting rights. Reviewers enjoy the recogni-
tion, and typically like the site and want to contribute to it. Most of them enjoy doing
it. A number of applications highlight the contributions made by users, by having a
Top Reviewers list. Reviews from top reviewers are also typically placed toward the top
and featured more prominently. Sites may also feature one of their top reviewers on
the site as an incentive to contribute.

 Some sites may also provide an incentive, perhaps monetary, for users to contrib-
ute content and reviews. Epinions.com pays a small amount to its reviewers. Similarly,
Revver, a video sharing site, pays its users for contributed videos. It’s interesting to
note that even though sites like Epinions.com pay money to their reviewers, while
Amazon doesn’t, Amazon still has on order of magnitude more reviews from its users.

 Users tend to contribute more to sites that have the biggest audience.
 In a site where anyone can contribute content, is there anything that stops your

competitors from giving you an unjustified low rating? Good reviewers, especially
those that are featured toward the top, try to build a good reputation. Typically, an

6 Google News, which we look at in chapter 12, simply uses a click as a positive vote for the item.

40 CHAPTER 2 Learning from user interactions
application has links to the reviewer’s profile along with
other reviews that he’s written. Other users can also write
comments about a review. Further, just like voting for articles
at Digg, other users can endorse a reviewer or vote on his
reviews. As shown in figure 2.17, taken from epinions.com,
users can “Trust” or “Block” reviewers to vote on whether a
reviewer can be trusted.

 The feedback from other users about how helpful the
review was helps to weed out biased and unhelpful reviews. Sites also allow users to
report reviewers who don’t follow their guidelines, in essence allowing the community
to police itself.
MODELING THE REVIEWER AND ITEM RELATIONSHIP

We need to introduce another entity—the reviewer,
who may or may not be a user of your application.
The association between a reviewer, an item, and an
ItemReview is shown in figure 2.18. This is similar to
the relationship between a user and ratings.

■ Each reviewer may write zero or more reviews.
■ Each review is written by a reviewer.
■ Each item may have zero or more reviews.
■ Each review is associated with one item.

The persistence design for storing reviews is shown in figure 2.19, and is similar to the
one we developed for ratings. Item reviews are in the form of unstructured text and
thus need to be indexed by search engines.

 So far, we’ve looked at the many forms of user interaction and the persistence
architecture to build it in your application. Next, let’s look at how this user-interaction
information gets converted into collective intelligence.

Figure 2.19
Schema design for
persisting reviews

Figure 2.17 Epinions.com
allows users to place a
positive or negative vote of
confidence in a reviewer.

Reviewer Item

0, .. *
ItemReview

1

0, .. *

Figure 2.18 The association
between a reviewer, an item,
and the review of an item

41Converting user interaction into collective intelligence
2.4 Converting user interaction into collective intelligence
In section 2.2.6, we looked at the two forms of data representation that are used by
learning algorithms. User interaction manifests itself in the form of the sparsely popu-
lated dataset. In this section, we look at how user interaction gets converted into a
dataset for learning.

 To illustrate the concepts, we use a simple example dealing with three users who’ve
rated photographs. In addition to the cosine-based similarity computation we intro-
duced in section 2.2.5, we introduce two new similarity computations: correlation-based
similarity computation and adjusted-cosine similarity computation. In this section, we
spend more time on this example which deals with ratings to illustrate the concepts. We
then briefly cover how these concepts can be generalized to analyze other user interac-
tions in section 2.4.2. That section forms the basis for building a recommendation
engine, which we cover in chapter 12.

2.4.1 Intelligence from ratings via an example

There are a number of ways to transform raw ratings from users into intelligence.
First, you can simply aggregate all the ratings about the item and provide the average
as the item’s rating. This can be used to create a Top 10 Rated Items list. Averages
work well, but then you’re constantly promoting the popular content. How do you
reach the potential of The Long Tail? A user is really interested in the average rating
for content by users who have similar tastes.

 Clustering is a technique that can help find a group of users similar to the user.
The average rating of an item by a group of users similar to a user is more relevant to
the user than a general average rating. Ratings provide a good quantitative feedback
of how good the content is.

 Let’s consider a simple example to understand the basic concepts associated with
using ratings for learning about the users and items of interest. This section intro-
duces you to some of the basic concepts.

 Let there be three users: John, Jane, and Doe, who each rate three items. As per
our discussion in section 2.2.1, items could be anything—blog entries, message board
questions, video, photos, reviews, and so on. For our example, let them rate three
photos: Photo1, Photo2, and Photo3, as shown in table 2.7. The table also shows the
average rating for each photo and the average rating given by each user. We revisit this
example in section 12.3.1 when we discuss recommendation engines.

Photo1 Photo2 Photo3 Average

John 3 4 2 3

Jane 2 2 4 8/3

Doe 1 3 5 3

Average 2 3 11/3 26/3
Table 2.7 Ratings data
used in the example

42 CHAPTER 2 Learning from user interactions
Given this set of data, we answer two questions in our example:

■ What are the set of related items for a given item?
■ For a user, who are the other users that are similar to the user?

We answer these questions using three approaches: cosine-based similarity, correla-
tion-based similarity, and adjusted-cosine-based similarity.
COSINE-BASED SIMILARITY COMPUTATION

Cosine-based similarity takes the dot product of two vectors as described in section 2.2.4.
First, to learn about the photos, we transpose the matrix, so that a row corresponds to
a photo while the columns (users) correspond to dimensions that describe the photo,
as shown in table 2.8.

Next, we normalize the values for each of the rows. This is done by dividing each of the
cell entries by the square root of the sum of the squares of entries in a particular row.
For example, each of the terms in the first row is divided by �32+22+12 = �14 = 3.74 to
get the normalized dataset shown in table 2.97.

We can find the similarities between the items by taking the dot product of their
vectors. For example, the similarity between Photo 1 and Photo 2 is computed as
(0.8018 * 0.7428) + (0.5345 * 0.3714) + (0.2673 * 0.557) = 0.943.

 Using this, we can develop the item-to-item similarity table, shown in table 2.10.
This table also answers our first question: what are the set of related items for a given
item? According to this, Photo1 and Photo2 are very similar. The closer to 1 a value in
the similarity table is, the more similar the items are to each other.

John Jane Doe Average

Photo1 3 2 1 2

Photo 2 4 2 3 3

Photo 3 2 4 5 11/3

Average 3 8/3 3 26/3

John Jane Doe

Photo1 0.8018 0.5345 0.2673

Photo2 0.7428 0.3714 0.557

Photo3 0.2981 0.5963 0.7454

7 There is a unit test in the downloadable code that implements this example.

Photo1 Photo2 Photo3

Photo1 1 0.943 0.757

Photo2 0.943 1 0.858

Photo3 0.757 0.858 1

Table 2.8 Dataset
to describe photos

Table 2.9 Normalized dataset
for the photos using raw ratings

Table 2.10 Item-to-item using raw ratings

43Converting user interaction into collective intelligence
To determine similar users, we need to consider the original data in table 2.7. Here,
associated with each user is a vector, where the rating associated with each item corre-
sponds to a dimension in the vector. The analysis process is similar to our approach for
calculating the item-to-item similarity table. We first need to normalize the vectors and
then take a dot product between two normalized vectors to compute their similarities.

 Table 2.11 contains the normalized vectors associated with each user. The process
is similar to the approach taken to compute table 2.9 from table 2.8. For example,
�32+42+22 = �29 = 5.385 is the normalizing factor for John’s vector in table 2.7.

Next, a user-to-user similarity table can be computed as shown in table 2.12 by taking
the dot product of the normalized vectors for two users.

As shown in table 2.12, Jane and Doe are very similar. The preceding approach uses the
raw ratings assigned by a user to an item. Another alternative is to focus on the devia-
tions in the rating from the average values that a user provides. We look at this next.
CORRELATION-BASED SIMILARITY COMPUTATION

Similar to the dot product or cosine of two vectors, one can compute the correlation
between two items as a measure of their similarity—the Pearson-r correlation. This corre-
lation between two items is a number between –1 and 1, and it tells us the direction
and magnitude of association between two items or users. The higher the magni-
tude—closer to either –1 or 1—the higher the association between the two items. The
direction of the correlation tells us how the variables vary. A negative number means
one variable increases as the other decreases, or in this example, the rating of one
item decreases as the rating of another increases.

 To compute the correlation, we need to isolate those cases where the users co-
rated items—in our case, it’s the complete set, as all the users have rated all the con-
tent. Let U be the set of users that have rated both item i and j.

 Now the scary-looking formula to compute the correlation:

Photo1 Photo2 Photo3

John 0.5571 0.7428 0.3714

Jane 0.4082 0.4082 0.8165

Doe 0.1690 0.5071 0.8452

John Jane Doe

John 1 0.83 0.78

Jane 0.83 1 0.97

Doe 0.78 0.97 1.00

corr i j,() ueU Rui Ri–() Ruj Rj–()∑
ueU Rui Ri–()2∑ ueU Ruj Rj–()2∑

--=

Table 2.11 Normalized
rating vectors for each user

Table 2.12 User-to-user similarity table

44 CHAPTER 2 Learning from user interactions
where Ru,i is the rating of user u for item i and Ri is the average rating of item i. The
correlation computation looks for variances from the mean value for the items.

 Let’s look at the correlation of Photo 1 and Photo 2.

Alternatively, for the computation, it’s useful to subtract the average value for a row as
shown in table 2.13. Note that the sum of the numbers for each row is equal to zero.

Table 2.14 shows the correlation matrix between the items and provides answers to
our first question: what are the set of related items for a given item? According to this,
Photo 1 and Photo 3 are strongly negatively correlated.

Similarly, the correlation matrix between the users is computed along the rows of the
data shown in table 2.7. Table 2.15 contains the normalized rating vectors for each
user that will be used for computing the correlation. Note that the sum of the values
for each row is 0.

The resulting correlation matrix is shown in table 2.16 and provides answers to our sec-
ond question: given a user, who are the other users that are similar to that user? Note
that users Jane and Doe are highly correlated—if one likes an item, chances are the
other likes it, too. John is negatively correlated—he dislikes what Jane and Doe like.

 Since users Jane and Doe are highly correlated, you can recommend items that are
rated highly by Jane to Doe and vice versa.

John Jane Doe

Photo1 1 0 -1

Photo 2 1 -1 0

Photo 3 -5/3 1/3 4/3

Photo1 Photo2 Photo3

Photo1 1 0.5 -0.982

Photo2 0.5 1 -0.655

Photo3 -0.982 -0.655 1

Photo1 Photo2 Photo3

John 0 0.7071 -0.7071

Jane -0.4083 -0.4083 0.8166

Doe -0.7071 0 0.7071

Numerator 3 2–() 4 3–() 2 2–() 2 3–() 1 2–() 3 3–()+ + 1= =

Denominator 3 2–()2 2 2–()2 1 2–()+ +
2

4 3–()2 2 3–()2 3 3–()2+ + 2= =

Corr(1,2)=0.5

Table 2.13 Normalized matrix
for the correlation computation

Table 2.14 Correlation matrix for the items

Table 2.15 Normalized
rating vectors for each user

45Converting user interaction into collective intelligence
ADJUSTED COSINE-BASED SIMILARITY COMPUTATION

One drawback of computing the correlation between items is that it doesn’t take into
account the difference in rating scale between users. For example, in the example data,
user Doe is correlated highly with Jane but tends to give ratings toward the extremes.

 An alternative formula, known as adjusted cosine is used, which is

where Ru is the average rating for user u. Here, instead of subtracting the average
value for a row, the average value provided by a user is used.

 To compute this, it’s again useful to normalize the dataset by removing the average
rating value from the column values. This leads to the data shown in table 2.17. Note
that the sum of the entries for a column is equal to zero.

Table 2.18 shows the item-to-item similarity for the three items. Again, Photo1 and
Photo3 are strongly negatively correlated, while Photo2 and Photo3 are similar.

Along the same lines, to compute the similarity between users, we subtract the average
rating associated with each item in table 2.7. Table 2.19 shows the resulting table. Note
that the sum of the values for a column is equal to 0.

John Jane Doe

John 1 -0.866 -0.5

Jane -0.866 1 0.87

Doe -0.5 0.87 1

John Jane Doe

Photo1 0 -2/3 -2

Photo2 1 -2/3 0

Photo3 -1 4/3 2

Photo1 Photo2 Photo3

Photo1 1 0.1754 -0.891

Photo2 0.1754 1 .604

Photo3 -0.891 .604 1

Photo1 Photo2 Photo3

John 1 1 -5/3

Jane 0 -1 1/3

Doe -1 0 4/3

similarity i j,() ueU Ru i, Ru–() Ru j, Ru–()∑
ueU Ru i, Ru–()2∑ ueU Ru ij, Ru–()2∑

---=

Table 2.16 Correlation
matrix for the users

Table 2.17 Normalized matrix for the
adjusted cosine-based computation

Table 2.18 Similarity between
items using correlation similarity

Table 2.19 Normalized
rating vectors for each user

46 CHAPTER 2 Learning from user interactions
Again, normalizing each of the vectors to unit length leads to table 2.20.

Finally, table 2.21 contains the similarity matrix between the users by taking the dot
product of their vectors.

So far in this section, we’ve looked at how to transform user rating data into a dataset
for analysis, and we used three different similarity metrics to compute the similarities
between various items and users. The method used for computing the similarity does
have an effect on the result. Next, let’s look at how this approach can be generalized
for other interactions such as voting.

 The analysis for using voting information is similar to that for rating. The only dif-
ference is that the cell values will be either 1 or –1 depending on whether the user
voted for or against the item. The persistence model for representing voting is similar
to that developed in the previous section for persisting ratings.

2.4.2 Intelligence from bookmarking, saving, purchasing Items,
forwarding, click-stream, and reviews

In this section, we quickly look at how other forms of user-interaction get transformed
into metadata. There are two main approaches to using information from users’ inter-
action: content-based and collaboration-based.
CONTENT-BASED APPROACH

As shown in figure 2.20, metadata is associated with each item. This term vector could
be created by analyzing the content of the item or using tagging information by users,
as we discuss in the next chapter. The term vec-
tor consists of keywords or tags with a relative
weight associated with each term. As the user
saves content, visits content, or writes recom-
mendations, she inherits the metadata associ-
ated with each.

 This implies that both users and items are
represented by the same set of dimen-
sions—tags. Using this representation, one

Photo1 Photo2 Photo3

John 0.4575 0.4575 -0.7625

Jane 0 -0.9486 0.3162

Doe -0.6 0 0.8

John Jane Doe

John 1 -0.675 -0.884

Jane -0.675 1 -0.253

Doe -0.884 -0.253 1.00

Table 2.20 Normalizing
the vectors to unit lengthr

Table 2.21 Adjusted cosine
similarity matrix for the users

User Items

MetaData

Visits

Metadata MetaData

Items

Metadata
Update

Figure 2.20 A user’s metadata vector
is created using the metadata vector
associated with all the items visited.

47Converting user interaction into collective intelligence
can compare users with other users, users with items, and items with other items using
cosine-based similarity. We see an example of this in the next chapter.
COLLABORATION-BASED APPROACH

The analysis of data collected by bookmarking, saving an item, recommending an
item to another user, purchasing an item, or click-stream analysis is similar. To under-
stand this, let’s use the following example.

 Consider data collected in a window of time. Again, let our three users John, Jane,
and Doe bookmark three articles Article 1, Article 2, and Article 3, as shown in table 2.22.
We’ve placed a 1 for articles that the user has bookmarked. This is a sparsely populated
dataset as described in section 2.2.6.Using this data, you maybe interested in finding the

following answers:

■ What are other items that have been bookmarked by other users who bookmarked the same
articles as a specific user?— When the user is John, the answer is Article 3—Doe
has bookmarked Article 1 and also Article 3.

■ What are the related items based on the bookmarking patterns of the users?

To determine the answer to the last question, it’s again useful to invert the dataset to
the one shown in table 2.23. Again, the users correspond to the dimensions of the vec-
tor for an article. Similarities between two items are measured by computing the dot
product between them.

The normalized matrix is shown in table 2.24.

The item-to-item similarity matrix based on this data is shown in table 2.25. According
to this, if someone bookmarks Article 1, you should recommend Article 3 to the user,
and if the user bookmarks Article 2, you should also recommend Article 3.

Article 1 Article 2 Article 3

John 1

Jane 1 1

Doe 1 1

John Jane Doe

Article 1 1 1

Article 2 1

Article 3 1 1

John Jane Doe

Article 1 0.7071 0.7071

Article 2 1

Article 3 0.7071 0.7071

Table 2.22 Bookmarking data for analysis

Table 2.23 Adjusted cosine
similarity matrix for the users

Table 2.24 Normalized dataset
for finding related articles

48 CHAPTER 2 Learning from user interactions
A similar analysis can be performed by using information from the items the user
saves, purchases, and recommends. You can further refine your analysis by associating
data only from users that are similar to a user based on user-profile information. In
section 12.3, we further discuss this approach when we discuss building recommenda-
tion engines.

 In this section, we looked at how we can convert user interactions into intelligence
using a simple example of rating photos. We looked at finding items and users of
interest for a user. We computed this by using three similarity computations.

2.5 Summary
Services for embedding intelligence in your applications can be divided into two
types. First, synchronous services get invoked when the web server processes a request
for a user. Second, asynchronous services typically run in the background and take
longer to process. An event-driven SOA architecture is recommended for embed-
ding intelligence.

 There’s a rich amount of information that can be used from user interaction.
Metadata attributes can be used to describe items and users. Some interactions such
as ratings, voting, buying, recommendations, and so forth are fairly explicit as to
whether the user likes the item or not. There are two main approaches to finding
items of interest for a user: content-based and collaborative-based. Content-based
techniques build a term vector—a multidimensional representation for the item
based on the frequency of occurrence and the relative frequency of the terms—and
then associate similar items based on the similarities between term vectors. Collabora-
tive-based techniques tend to automate “word of mouth recommendations” to find
related items and users.

 Metadata associated with users and items can be used to derive intelligence in the
form of building recommendation engines and predictive models for personalization,
and for enhancing search.

 Tagging is another way that users interact with items and provide a rich set of infor-
mation. We look at tagging next in chapter 3.

2.6 Resources
 “All of Web2.0.” Chrisekblog. http://chrisek.com/wordpress/2006/10/03/all-of-web-20/
 Arthur, Charles. “What is the 1% rule?” July 2006. The Guardian. http://

technology.guardian.co.uk/weekly/story/0,,1823959,00.html
 Baeza-Yates, Ricardo, and Berthier Ribeiro-Neto. Modern Information Retrieval. Paperback,

May 15, 1999.

Article 1 Article 2 Article 3

Article 1 1 0 0.5

Article 2 0 1 0.7071

Article 3 0.5 0.7071 1
Table 2.25 Related articles
based on bookmarking

http://chrisek.com/wordpress/2006/10/03/all-of-web-20/
http://technology.guardian.co.uk/weekly/story/0,,1823959,00.html
http://technology.guardian.co.uk/weekly/story/0,,1823959,00.html

49Resources
 Goldberg, David, David Nichols, Brian M. Oki, and Douglas Terry. Using collaborative filtering to
weave an information tapestry. Communications of the ACM, 35(12):61-70, 1992.

 Grossman, David A., and Ophir Frieder. Information Retrieval: Algorithms and Heuristics
(The Information Retrieval Series) (2nd Edition). Paperback, Jan 23, 2006.

 “Joshua Schachter.” Joho the Blog. http://www.hyperorg.com/blogger/mtarchive/
berkman_joshua_schachter.html

 Kelly, Kevin. “A review of review sites.” http://www.kk.org/cooltools/archives/000549.php
 Kopelman, Josh. “53,651.” Blog. May 2006 . http://redeye.firstround.com/2006/05/

53651.html
 Pulier, Eric, and Hugh Taylor. 2005. Understanding Enterprise SOA. Manning.
 Sarwar, Badru, George Karypis, Joseph Konstan, and John Riedl. Item-based Collaborative Filtering

Recommendation Algorithms. ACM, 2001. http://www10.org/cdrom/papers/519/
node1.html

 “Should top users be paid?” Stewtopia, Blog. September 11, 2006. http://blog.stewtopia.com/
2006/09/11/should-top-users-be-paid/

 Thornton, James. Collaborative Filtering Research Papers. http://jamesthornton.com/cf/
 Wang, Jun, Arjen P. de Vries, and Marcel J.T. Reinders. Unifying User-based and Item-based

Collaborative Filtering Approaches by Similarity Fusion. 2006. http://ict.ewi.tudelft.nl/pub/
jun/sigir06_similarityfuson.pdf.

http://www.hyperorg.com/blogger/mtarchive/berkman_joshua_schachter.html
http://www.hyperorg.com/blogger/mtarchive/berkman_joshua_schachter.html
http://www.kk.org/cooltools/archives/000549.php
http://redeye.firstround.com/2006/05/53651.html
http://redeye.firstround.com/2006/05/53651.html
http://www10.org/cdrom/papers/519/node1.html
http://www10.org/cdrom/papers/519/node1.html
http://blog.stewtopia.com/2006/09/11/should-top-users-be-paid/
http://blog.stewtopia.com/2006/09/11/should-top-users-be-paid/
http://jamesthornton.com/cf/
http://ict.ewi.tudelft.nl/pub/jun/sigir06_similarityfuson.pdf
http://ict.ewi.tudelft.nl/pub/jun/sigir06_similarityfuson.pdf

Extracting intelligence
 from tags
In content-centric applications, users typically navigate content through categories
or menus authored by the site editors. Each category can have a number of nested
subcategories, allowing the user to drill down the subcategory tree and find con-
tent of interest. From a user-experience point of view, such navigation can be
tedious. A user might need to navigate across multiple subtopics before finding the
right item. This approach of manually categorizing items can be expensive and dif-
ficult to maintain over the long run due to the manpower involved, especially as the
amount of content increases. As users generate content on your site, it’ll be expen-
sive and sometimes financially infeasible to manually categorize the content being
created. Imagine a site like Flickr with millions of photographs and the effort that
would be required if you tried to manually categorize each photo.

This chapter covers
■ Three forms of tagging and the use of tags
■ A working example of how intelligence is

extracted from tags
■ Database architecture for tagging
■ Developing tag clouds
50

51Introduction to tagging
 An alternative to manual categorization and rigid menus is to build a system that
can learn about each user—what kind of content she’s interested in—and dynamically
build navigation links, hyperlinks to other relevant items, whose text or phrases are
also familiar to the user. Further, such a system can be built in a cost-effective manner
without having to rely on professional editors to categorize items.

 Users tagging items—adding keywords or phrases to items—is now ubiquitous on
the web. This simple process of a user adding labels or tags to items, bookmarking
items, sharing items, or simply viewing items provides a rich dataset that can translate
into intelligence, for both the user and the items. This intelligence can be in the form
of finding items related to the one tagged; connecting with other users who have simi-
larly tagged items; or drawing the user to discover alternate tags that have been associ-
ated with an item of interest and through that finding other related items.

 In this chapter, we look at three forms of generating tags in your application: pro-
fessionally generated tags, user-generated tags, and machine-generated tags. We
review the advantages and disadvantages of each approach and develop guidelines for
creating tags. We briefly review how you can use dynamic navigation in your applica-
tion. We use a working example to illustrate the process of developing the term vector
or metadata for the item and user. Next, we discuss how you can build this infrastruc-
ture in a scalable manner. For this, we first review the various designs used to persist
tagging-related data and develop the recommended persistence architecture. Next,
we develop code to build a tag cloud, one of the ways to add dynamic navigation to
your application, and end with some practical issues.

3.1 Introduction to tagging
Tagging is the process of adding freeform text, either words or small phrases, to items.
These keywords or tags can be attached to anything in your application—users, pho-
tos, articles, bookmarks, products, blog entries, podcasts, videos, and more.

 In section 2.2.3, we looked at using term vectors to associate metadata with text.
Each term or tag in the term vector represents a dimension. The collective set of
terms or tags in your application defines the vocabulary for your application. When
this same vocabulary is used to describe both the user and the items, we can compute
the similarity of items with other items and the similarity of the item to the user’s
metadata to find content that’s relevant to the user. In this case, tags can be used to
represent metadata. Using the context in which they appear and to whom they
appear, they can serve as dynamic navigation links. The tag cloud introduced later in
the chapter is one example of such navigation.

 In essence, tags enable us to

1 Build a metadata model (term vector) for our users and items. The common
terminology between users and items enables us to compute the similarity of an
item to another item or to a user.

2 Build dynamic navigation links in our application, for example, a tag cloud or
hyperlinked phrases in the text displayed to the user.

3 Use metadata to personalize and connect users with other users.

52 CHAPTER 3 Extracting intelligence from tags
4 Build a vocabulary for our application.
5 Bookmark items, which can be shared with other users.

In this section, we look at some basic information about tagging.

3.1.1 Tag-related metadata for users and items

Tags provide a common vocabulary to represent metadata associated with users and
items. The metadata developed can be again divided into content-based metadata and
collaborative-based metadata.

 In the content-based approach, metadata associated with the item is developed by
analyzing the item’s content as explained in section 2.2.3. This is represented by a
term vector, a set of tags with their relative weights. Similarly, metadata can be associ-
ated with the user by aggregating the metadata of all the items visited by the user
within a window of time, as explained in section 2.4.2.

 In the collaborative approach, user actions are used for deriving metadata. User
tagging is an example of such an approach, and we illustrated with the example in sec-
tion 2.2. Basically, the metadata associated with the item can be computed by comput-
ing the term vector from the tags—taking the relative frequency of the tags associated
with the item and normalizing the counts.

 When you think about metadata for a user and item using tags, think about a term
vector with tags and their related weights.

 We can categorize tags based on who gen-
erated them. As shown in figure 3.1, there are
three main types of tags: professionally gener-
ated, user-generated, and machine-generated.

 Next, we look at each of these three types
of tags.

3.1.2 Professionally generated tags

There are a number of applications that are content rich and provide different kinds
of content—articles, videos, photos, blogs—to their users. Vertical-centric medical
sites, news sites, topic-focused group sites, or any site that has a professional editor
generating content are examples of such sites. In these kinds of sites, the professional
editors are typically domain experts, familiar with content domain, and are usually
paid for their services. The first type of tags we cover is tags generated by such domain
experts, which we call professionally generated tags.

 Tags that are generated by domain experts have the following characteristics:

■ They bring out the concepts related to the text.
■ They capture the associated semantic value, using words that may not be found

in the text.
■ They can be authored to be displayed on the user interface.

Tags

Professionally
Generated

User-
Generated

Machine-
Generated

Figure 3.1 Three ways to generate tags

53Introduction to tagging
■ They can provide a view that isn’t centered around just the content of interest,
but provides a more global overview.

■ They can leverage synonyms—similar words.
■ They can be multi-term phrases.
■ The set of words used can be controlled, with a controlled vocabulary.

Professionally generated tags require a lot of manpower and can be expensive, espe-
cially if a large amount of new content is being generated, perhaps by the users. These
characteristics can be challenging for an automated algorithm.

3.1.3 User-generated tags

It’s now common to allow users to tag items. Tags generated by the users fall into the
category of user-generated tags, and the process of adding tags to items is commonly
known as tagging.

 Tagging enables a user to associate freeform text to an item, in a way that makes
sense to him, rather than using a fixed terminology that may have been developed by
the content owner or created professionally.

 Figure 3.2 shows the process of tagging at del.icio.us. Here, a user can associate any
tag or keyword with a URL. The system displays a list of recommended and popular
tags to guide the user.

 The use of users to create tags in your application is a great example of leveraging
the collective power of your users. Items that are popular will tend to be frequently
tagged. From an intelligence point of view, for a user, what matters most is which items
people similar to the user are tagging.

Figure 3.2 Screenshot of how a user creates a tag at del.icio.us

54 CHAPTER 3 Extracting intelligence from tags
 User-generated tags have the following characteristics:

■ They use terms that are familiar to the user.
■ They bring out the concepts related to the text.
■ They capture the associated semantic value, using words that may not be found

in the text.
■ They can be multi-term phrases.
■ They provide valuable collaborative information about the user and the item.
■ They may include a wide variety of terms that are close in meaning.

User-generated tags will need to be stemmed to take care of plurals and filtered for
obscenity. Since tags are freeform, variants of the same tag may appear. For example, col-
lective intelligence and collectiveintelligence may appear as two tags. As shown in figure 3.2,
you may want to offer recommended tags to the user based on the dictionary of tags cre-
ated in your application and the first few characters typed by the user.1 We discuss user-
generated tags and tagging in more detail later in the next section.

3.1.4 Machine-generated tags

Tags or terms generated through an automated algorithm are known as machine-gen-
erated tags. In section 2.2.3, we briefly reviewed the steps involved in generating tags
using an automated algorithm. Section 4.3 has a working example of how tags can be
generated by analyzing the text. We develop the toolkit to extract tags in chapter 8. An
algorithm generates tags by parsing through text and detecting terms and phrases.

 Machine-generated tags have the following characteristics:

■ They use terms that are contained in the text, with the exception of injected synonyms.
■ They’re usually single terms—Multi-term phrases are more difficult to extract and

are usually done using a set of predefined phrases. These predefined phrases
can be built using either professional or user-generated tags.

■ They can generate a lot of noisy tags—tags that can have multiple meanings based on the
context, including polysemy2 and homonyms.3—For example, the word gain can have
a number of meanings—height gain, weight gain, stock price gain, capital gain,
amplifier gain, and so on. Again, detecting multiple-term phrases, which are a
lot more specific than single terms, can help solve this problem.

In the absence of user-generated and professionally generated tags, machine-gener-
ated tags are the only alternative. This is especially true for analyzing user-generated
content.

 Chances are that you’ll be using tags for both dynamic navigation in your applica-
tion and for representing metadata. The next section covers some tips on how to tag
items that I’ve learned from my experience.

1 This is commonly done using AJAX.
2 A word that has multiple related meanings depending on the context.
3 A word that has multiple unrelated meanings depending on the context.

55Introduction to tagging
3.1.5 Tips on tagging

Here are a few guidelines for how to create tags:

■ If possible, build a tag dictionary for your product —Further tags can be organized
in a “is-a” hierarchy. While tagging, build a synonym dictionary—a set of tags
that have the same meaning. Leverage this dictionary to extract phrases while
analyzing content and inject synonyms automatically while parsing text (see
chapter 8).

■ Avoid tags that can have multiple meanings based on their context —For example, gain
can have multiple meanings as discussed in the previous section. Use a more
qualified phrase, such as weight gain or stock price gain.

■ Don’t use multiple tags to capture both singular and plurals, since the tags will be
stemmed—Similarly, don’t worry about capitalization—all tags will be converted
to lowercase.

■ Multi-term phrases are rarer in occurrence and therefore can give highly relevant
matches —To detect multi-term phrases using an automated algorithm, you may
need to use a phrase dictionary. This is discussed more in chapter 8.

■ For a system that uses only professionally generated tags, the weight associated with each
tag is related to the number of other tags used to describe the item and the inverse-
document-frequency (idf) for the tag —Every additional tag can dilute the weight of
the other tags for an item. Use adequate but only relevant tags for an item.

■ You can use a combination of the three sources of tag generation.
■ While tagging, build a synonym dictionary — a set of tags that have the same meaning.

So far we’ve looked at the three forms of tagging and some pointers on how to tag.
You may wonder what motivates a user to tag information; we look at this next.

3.1.6 Why do users tag?

In its most basic form, people may tag things so as to organize items of interest and
remember them. For example, if you have a large number of files on your computer,
you normally create folders to organize your files. Tagging is similar—you create cate-
gories or buckets and associate them with the item of interest. An item can be tagged
with multiple labels, as shown in figure 3.3, a screenshot from Amazon.com, where
users are allowed to add multiple tags to an item. By tagging items, users can use tags
that make sense to them and don’t have to use the classification of the content owner
or site.

 Users also tag items so that they can share the information with others, find related
items that others have tagged in the same category, and also when they want to be
found by others (mainly in social-networking sites).

 As shown in figure 3.3, let’s assume that a user is interested in management and
has placed a management tag for his items of interest. Over a period of time, if the user
would like to see all items related to management, he can look at all items that have
been tagged with management. Tags help users organize and find items of interest.

56 CHAPTER 3 Extracting intelligence from tags
Another feature that’s actively used, especially for social networking applications, is
allowing users to explore tags. In our example, any user would be able to click on the
management link and see other items that have been tagged by other users with the
same tag. This helps them discover new items of interest. User can also look at which
users have used the same tag, thus helping them find other users with similar interests.

 You can also find similar tags. The same item may have been tagged by others with
different keywords. By following the links, you can associate similar tags. For example,
in figure 3.3, the same item has been tagged as social networks, sociology, management,
marketing, and so on. These four tags may be similar, especially if they’re repeated con-
sistently across multiple items.

 So far, we’ve looked at what tags are and how they’re generated. At the beginning
of the section, we listed how tags can be used in your application. Next, we go through
each use case in more detail.

3.2 How to leverage tags
It’s useful to build metadata by analyzing the tags associated with an item and placed
by a user. This metadata can then be used to find items and users of interest for the
user. In addition to this, tagging can be useful to build dynamic navigation in your
application, to target search, and to build folksonomies. In this section, we briefly
review these three use cases.

3.2.1 Building dynamic navigation

In early applications, content would be categorized by professional authors. A user
would navigate to the content by first selecting a category and then drilling down the
category tree until the content was found. Tags provide an alternative to this rigid cat-
egorization, with a tag cloud as one manifestation of this dynamic navigation. Hyper-
links within content are another manifestation of this dynamic navigation. It’s now
fairly common for applications to hyperlink cities, phone numbers, and certain key-
words as they display content on their sites. You must have seen this kind of hyperlink-
ing, perhaps in your Yahoo! or Gmail email account.

 As shown in figure 3.4, a tag cloud shows a list of tags, typically arranged alphabeti-
cally, with the font size representing the tag’s frequency of use. The bigger the font in

Figure 3.3 Amazon allows users to tag a product and see how others have tagged the same product.

57How to leverage tags
a tag cloud, the more frequently it’s used. Some tag clouds also use different font col-
ors in their tag clouds.

 Figure 3.5 shows the tag cloud of all-time most popular tags at Flickr. There are a
number of interesting things that we can learn from this tag cloud. First, tags are not
stemmed—plurals are treated as separate tags. For example, animal and animals are
treated as separate tags, as are flower and flowers.

 Note that the tag cloud here has only single-term tags—new, york, and newyork are
three separate tags. The tag San could be a part of San Diego, San Jose, or San Francisco.
Clearly, in this case, the content parsing isn’t intelligent enough to extract the content
in a way that makes sense.

Figure 3.4 Tag cloud
from squidoo.com

Figure 3.5 Tag cloud of all-time most popular tags at Flickr

58 CHAPTER 3 Extracting intelligence from tags
Toward the center of the tag cloud, you’ll see the tag nyc. Clearly, nyc is a synonym for
new york city, but these two phrases are treated as separate tags. To properly leverage
tags, we need to do the following:

■ Stem tags to take care of plurals.
■ Detect multi-term phrases.
■ Handle synonym tags.

The process of stemming, detecting phrases, and injecting synonyms is illustrated in
section 4.3, and the infrastructure for such an analysis is developed in chapter 8.

 A tag cloud needs terms and their relative weights, and that’s what’s contained in a
term vector! Whereas a term vector is one way to represent metadata, a tag cloud is a
visual representation of the metadata associated with an item or a user.

 A tag cloud can be created for each user using her metadata—her term vec-
tors—whether that metadata is learned from the content or from a collaborative-
based approach or a combination of the two. In essence, a tag cloud associated with a
user or an item is dynamic—it’s dependent on the tags that users have assigned to it or
that the user has visited.

 When a user clicks on a tag in a tag cloud, you have the context for the tag—the
associated metadata —and this can be converted into a call to the recommendation
engine, where you search for content that’s related to the user and the tag of interest.
We look at building a tag cloud in detail in section 3.4.

3.2.2 Innovative uses of tag clouds

At the beginning of the chapter, we mentioned the use of tags to create dynamic navi-
gation. Every day, more and more personalized tag clouds are appearing in applica-
tions. The tags in these clouds are being generated in one or more of three ways:
professional, automated, or user-generated. Figure 3.6 shows the basic strategy used.
Use the set of contents associated with the user—visited, subscribed to, and so on as
shown on the right side of the figure—to get a combined term vector and then display
it to the user. Remember that a tag cloud in essence is a visualization of a term vector.

 Here are a couple of other interesting examples of using tag clouds. John Herren
provides a good example of how different APIs can be combined to build powerful
applications. He built a prototype application, Yahoo! News Tag Soup (http://
yahoo.theherrens.com/index.php), that combines Yahoo!’s content analysis web ser-
vice with Yahoo! News feeds. The service extracts keywords from the news article,

Content

Term Vector

Content

Term Vector

Content

Term Vector

Tag
Cloud

combine

Figure 3.6 Combining term vectors from a
number of documents to form a tag cloud

http://yahoo.theherrens.com/index.php
http://yahoo.theherrens.com/index.php

59How to leverage tags
using Yahoo!’s content analysis web service. He then uses that information to build a
dynamic tag cloud. This idea was further developed to provide users with their own
personal tag cloud at TagCloud.com (http://www.tagcloud.com/). At this site, users
can register themselves, and based on the news feeds that they register for, a personal
tag cloud is generated for each user.

 ZoomCloud (http://zoomclouds.egrupos.net/) provides the capability to add a
tag cloud to your application. You can create a tag cloud on the ZoomCloud site by
feeding in an RSS feed. ZoomCloud provides a template to customize the look-and-
feel of the cloud and code that you can embed in your site. The tag cloud is hosted on
their site, and can be customized for your blog or application.

 In the future, look for more personalized tag clouds that combine multiple
sources of information.

3.2.3 Targeted search

In June 2005, in its quest to challenge Google’s search engine, Yahoo! launched its new
search technology called MyRank. Google’s search engine, which holds 50–60 percent4

of the search market share, is based on the PageRank algorithm—the number of con-
nections to a page, indicating the importance of the page. MyRank instead taps into the
collective intelligence generated by a community of users. MyRank powers Yahoo!’s
community, MyWeb 2.0. Users can save copies of web pages of interest in their personal
cache and tag them. Search results for each user are dependent on the items saved and
tagged by that user and his community of friends; results depend on the “quality” of a
user’s community and the pages they save and tag. Now let’s look at the use of tags
beyond MyRank.

 Just like Google’s page rank system looks at the number of links to a page as a met-
ric to quantify the page’s importance in its search engine, tags provide a similar met-
ric. If an article is being tagged by many users using the same tag, it’s probably very
relevant to that topic and of interest to other users.

 As shown in figure 3.7, you can combine the tag’s context with the user’s metadata
as a query to the search engine to get relevant results for the user.

 An example illustrates this approach well. Let’s say that a tag Spring appears in a tag
cloud that’s used for navigating books in
the application. Further, the user’s profile
identifies her as a developer. Here, the con-
text of the query is books, while the meta-
data associated with the user is from her
profile—developer. Relevant results can be
shown to the user when she clicks on the tag
Spring by making the following query to the
search engine: Books Spring Developer.

4 Nelsen/Netratings gave the number as 59% for the month of May 2008: http://www.nielsen-netratings.com/
pr/pr_080619V.pdf.

Tag

Context

User
Metadata

Search
Engine

Relevant
Results

Figure 3.7 Using a tag, the context that it
appears in, and user metadata to get relevant
results from a search engine

http://www.tagcloud.com/
http://zoomclouds.egrupos.net/
http://www.nielsen-netratings.com/pr/pr_080619V.pdf
http://www.nielsen-netratings.com/pr/pr_080619V.pdf

60 CHAPTER 3 Extracting intelligence from tags
3.2.4 Folksonomies and building a dictionary

User-generated tags provide an ad hoc way of classifying items, in a terminology that’s
relevant to the user. This process of classification, commonly known as folksonomies,
enables users to retrieve information using terms that they’re familiar with. There are
no controlled vocabularies or professionally developed taxonomies.

 The word folksonomy combines the words folk and taxonomy. Blogger Thomas
Vander Wal is credited with coining the term.

 Folksonomies allow users to find other users with similar interests. A user can
reach new content by visiting other “similar” users and seeing what other content is
available. Developing controlled taxonomies, as compared to folksonomies, can be
expensive both in terms of time spent by the user using the rigid taxonomy, and in
terms of the development costs to maintain it. Through the process of user tagging,
users create their own classifications. This gives useful information about the user and
the items being tagged.

 The tags associated with your application define the set of terms that can be used
to describe the user and the items. This in essence is the vocabulary for your applica-
tion. Folksonomies are built from user-generated tags. Automated algorithms have a
difficult time creating multi-term tags. When a dictionary of tags is available for your
application, automated algorithms can use this dictionary to extract multi-term tags.
Well-developed ontologies, such as in the life sciences, along with folksonomies are
two of the ways to generate a dictionary of tags in an application.

 Now that we’ve looked at how tags can be used in your application, let’s take a
more detailed look at user tagging.

3.3 Extracting intelligence from user tagging: an example
In this section, we illustrate the process of extracting intelligence from the process of
user tagging. Based on how users have tagged items, we provide answers to the follow-
ing three questions:

■ Which items are related to another item?
■ Which items might a user be interested in?
■ Given a new item, which users will be interested in it?

To illustrate the concepts let us look at the following example. Let’s assume we have
two users: John and Jane, who’ve tagged three articles: Article1, Article2, and Article3,
as follows:

■ John has tagged Article1 with the tags apple, fruit, banana
■ John has tagged Article2 with the tags orange, mango, fruit
■ Jane has tagged Article3 with the tags cherry, orange, fruit

Our vocabulary for this example consists of six tags: apple, fruit, banana, orange, mango,
and cherry. Next, we walk through the various steps involved in converting this infor-
mation into intelligence. Lastly, we briefly review why users tag items.

 Let the number of users who’ve tagged each of the items in the example be given
by the data in table 3.1. Let each tag correspond to a dimension. In this example, each

61Extracting intelligence from user tagging: an example
item is associated with a six-dimensional vector. For your application, you’ll probably
have thousands of unique tags. Note the last column, normalizer, shows the magnitude
of the vector. The normalizer for Article1 is computed as �42+82+62+32 = 11.18.

Next, we can scale the vectors so that their magnitude is equal to 1. Table 3.2 shows
the normalized vectors for the three items—each of the terms is obtained by dividing
the raw count by the normalizer. Note that the sum of the squares of each term after
normalization will be equal to 1.

3.3.1 Items related to other items

Now we answer the first of our questions: which items are related to other items?
 To find out how “similar” or relevant each of the items are, we take the dot product

for each of the item’s vector to obtain table 3.3. This in essence is an item-to-item rec-
ommendation engine.

 To get the relevance between Article1 and Article2 we took the dot product:

 (.7156 * .4682 + .2683 * .7491) = .536

According to this, Article2 is more relevant to Article1 than Article3.

3.3.2 Items of interest for a user

This item-to-item list is the same for all users. What if you wanted to take into account
the metadata associated with a user to tailor the list to his profile? Let’s look at this next.

 Based on how users tagged items, we can build a similar matrix for users, quantify-
ing what items they’re interested in as shown in table 3.4. Again, note the last column,
which is the normalizer to convert the vector into a vector of magnitude 1.

Table 3.1 Raw data used in the example

apple fruit banana orange mango cherry normalizer

Article1 4 8 6 3 11.18

Article2 5 8 5 10.68

Article3 1 4 3 10 11.22

Table 3.2 Normalized vector for the items

apple fruit banana orange mango cherry

Article1 .3578 .7156 .5367 .2683

Article2 .4682 .7491 0.4682

Article3 .0891 .3563 .2673 .891

Article1 Article2 Article3

Article1 1 .5360 .3586

Article2 .5360 1 .3671

Article3 .3586 .3671 1 Table 3.3 Similarity matrix between the items

62 CHAPTER 3 Extracting intelligence from tags
The normalized metadata vectors for John and Jane are shown in table 3.5.

Now we answer our second question: which items might a user be interested in?
 To find out how relevant each of the items are to John and Jane, we take the dot

product of their vectors. This is shown in table 3.6.

As expected in our fictitious example, John is interested in Article1 and Article2,
while Jane is most interested in Article3. Based on how the items have been tagged,
she is also likely to be interested in Article2.

3.3.3 Relevant users for an item

Next, we answer the last question: given a new item, which users will be interested in it?
 When a new item appears, the group of users who could be interested in that item

can be obtained by computing the similarities in the metadata for the new item and
the metadata for the set of candidate users. This relevance can be used to identify
users who may be interested in the item.

 In most practical applications, you’ll have a large number of tags, items, and users.
Next, let’s look at how to build the infrastructure required to leverage tags in your
application. We begin by developing the persistence architecture to represent tags
and related information.

3.4 Scalable persistence architecture for tagging
Web 2.0 applications invite users to interact. This interaction leads to more data being
available for analysis. It’s important that you build your application for scale. You need
a strong foundation to build features for representing metadata with tags, represent-
ing information in the form of tag clouds, and building metadata about users and
items. In this section, we concentrate on developing the persistence model for tagging
in your application. Again, the code for the database schemas is downloadable from
the download site.

Table 3.4 Raw data for users

apple fruit banana orange mango cherry normalizer

John 1 2 1 1 1 2.83

Jane 1 1 1 1.73

Table 3.5 The normalized metadata vector for the two users

apple fruit banana orange mango cherry

John .3536 .7071 .3536 .3536 .3536

Jane .5773 .5773 .5773

Article1 Article2 Article3

John .917 .7616 .378

Jane .568 .703 .8744
Table 3.6 Similarity matrix
between users and items

63Scalable persistence architecture for tagging
 This section draws from previous work done in the area of building the persistence
architecture for tagging, but generalizes it to the three forms of tags and illustrates the
concepts via examples.

 In chapter 2, we had two main entities: user and item. Now we introduce two new
entities: tags and tagging source. As shown in figure 3.8, all the tags are represented in
the tags table, while the three sources of producing tags—professional, user, and
automated—are represented in the tagging_source table.

The tags table has a unique index on the tag_text column: there can be only one
row for a tag. Further, there may be additional columns to describe the tag, such as
stemmed_text, which will help identify duplicate tags, and so forth.

 Now let’s look at developing the tables for a user tagging an item. There are a
number of approaches to this. To illustrate the benefits of the proposed design, I’m
going to show you three approaches, with each approach getting progressively better.
The schema also gets progressively more normalized. If you’re familiar with the prin-
ciples of database design, you can go directly to section 3.4.2.

3.4.1 Reviewing other approaches

To understand some of the persistence schemas used for storing data related to user
tagging, we use an example. Let’s consider the problem of associating tags with URLs;
here the URL is the item. In general, the URL can be any item of interest, perhaps a
product, an article, a blog entry, or a photo of interest. MySQLicious, Scuttle, and Toxi
are the three main approaches that we’re using.

 I’ve always found it helpful to have some sample data and represent it in the persis-
tence design to better understand the design. For our example, let a user bookmark
three URLs and assign them names and place tags, as shown in table 3.7.5

MYSQLICIOUS

The first approach is the MySQLicious approach, which consists of a single denormal-
ized table, mysqlicious, as shown in figure 3.9. The table consists of an autogenerated

Table 3.6 Data used for the bookmarking example

Url Name Tags

http://nanovivid.com/projects/mysqlicious/ MySQLicious Tagging schema denormalized

http://sourceforge.net/projects/scuttle/ Scuttle Database binary schema

http://toxi.co.uk/ Toxi Normalized database schema

5 The URLs are also reference to sites where you can find more information to the persistence architectures:
MySQLicious, Scuttle, and Toxi.

Figure 3.8 The tags and
tagging_source database
tables

http://nanovivid.com/projects/mysqlicious/
http://sourceforge.net/projects/scuttle/
http://toxi.co.uk/

64 CHAPTER 3 Extracting intelligence from tags
primary key, with tags stored in a space-delimited manner. Figure 3.8 also shows the
sample data for our example persisted in this schema. Note the duplication of database
and schema tags in the rows. This approach also assumes that tags are single terms.

Now, let’s look at the SQL you’d have to write to get all the URLs that have been tagged
with the tag database.

Select url from mysqlicious where tags like "%database%"

The query is simple to write, but “like” searches don’t scale well. In addition, there’s
duplication of tag information. Try writing the query to get all the tags. This denor-
malized schema won’t scale well.

TIP Avoid using space-delimited strings to persist multiple tags; you’ll have to
parse the string every time you need the individual tags and the schema
won’t scale. This doesn’t lend well to stemming words, either.

Next, let’s improve on this solution by looking at the second approach: the Scuttle
approach.
SCUTTLE SOLUTION

The Scuttle solution uses two tables, one for the bookmark and the other for the tags,
as shown in figure 3.10. As shown, each tag is stored in its own row.
The SQL to get the list of URLs that have been tagged with database is much more scal-
able than for the previous design and involves joining the two tables:

Select b.url from scuttle_bookmark b, scuttle_tags t where
 b.bookmark_id = t.bookmark_id and
 t.tag = 'database' group by b.url

The Scuttle solution is more normalized than MySQLicious, but note that tag data is
still being duplicated.

 Next, let’s look at how we can further improve our design. Each bookmark can
have multiple tags, and each tag can have multiple bookmarks. This many-to-many
relationship is modeled by the next solution, known as Toxi.

Figure 3.9 The
MySQLicious schema
with sample data

65Scalable persistence architecture for tagging
TOXI

The third approach that’s been popularized on the internet is the Toxi solution. This
solution uses three tables to represent the many-to-many relationship, as shown in fig-
ure 3.11. There’s no longer duplication of data. Note that the toxi_bookmark table is
the same as the scuttle_bookmark table.

 So far in this section, we’ve shown three approaches to persisting tagging informa-
tion. Each gets progressively more normalized and scalable, with Toxi being the closest
to the recommended design. Next, we look at the recommended design, and also gen-
eralize the design for the three forms of tags: professionally generated, user-generated,
and machine-generated.

Figure 3.10 Scuttle representation with sample data

239

438

637

226

525

424

313

212

111

tag_idbookmark_idid

normalized6

binary5

database4

denormalized3

schema2

tagging1

tagid

id int unsigned(10)
bookmark_id int unsigned(10)
tag_id int unsigned(10)

toxi_bookmark_tag

bookmark_id int unsigned(10)
url varchar(200)
name varchar(50)

toxi_bookmark

description
create_date

varchar(2000)
timestamp(19)

tag_id int unsigned(10)
tag int unsigned(10)

toxi_tags

bookmark_id=bookmark_id tag_id=tag_id

id

1

2

3

http://nanovivid.com/projects/mysqlicius/

http://sourceforge.net/projects/scuttle/

http://toxi.co.uk

url name

mysqlicius

scuttle

toxi

Figure 3.11 The normalized Toxi solution with sample data

http://nanovivid.com/projects/mysqlicius/
http://sourceforge.net/projects/scuttle/
http://toxi.co.uk

66 CHAPTER 3 Extracting intelligence from tags
3.4.2 Recommended persistence architecture

The scalable architecture presented here is similar to the one presented at MySQL-
Forge called TagSchema, and the one presented by Jay Pipes in his presentation “Tag-
ging and Folksonomy Schema Design for Scalability and Performance.” We generalize
the design to handle the three kinds of tags and illustrate the design via an example.

 Let’s begin by looking at how to handle user-generated tags. We use an example to
explain the schema and illustrate how commonly used queries can be formed for the
schema.
SCHEMA FOR USER-GENERATED TAGS

Let’s continue with the same example that we began with at the beginning of sec-
tion 3.3.2. Let’s add the user dimension to the example—there are users who are
tagging items. We also generalize from bookmarks to items.

 In our example, John and Jane are two users:

■ John has tagged item1 with the tags tagging, schema, denormalized
■ John has tagged item2 with the tags database, binary, schema
■ Jane has tagged item3 with the tags normalized, database, schema

As shown in figure 3.12, there are three entities—user, item, and tags. Each is repre-
sented as a database table, and there is a fourth table, a mapping table, user_item_tag.

normalized6

binary5

database4

denormalized3

schema2

tagging1

tag_textid

232

432

632

221

521

421

311

211

111

tag_iditem_iduser_id

item33

item22

item11

nameitem_id

Jane2

John1

nameuser_id

user_id int unsigned(10)
item_id
tag_id

user_item_tag

create_date timestamp(19)
int unsigned(10)
int unsigned(10)

user_id=user_iditem_id=item_id

tag_id=tag_id

item_id int unsigned(10)
name varchar(50)

item
tag_id int unsigned(10)
tag_text varchar(50)

tags
user_id int unsigned(10)
name varchar(50)

user

Figure 3.12 The recommended persistence
schema designed for scalability and performance

67Scalable persistence architecture for tagging
Let’s look at how the design holds up to two of the com-
mon use cases that you may apply to your application:

■ What other tags have been used by users who have
at least one matching tag?

■ What other items are tagged similarly to a given item?

As shown in figure 3.13 we need to break this into three
queries:

1 First, find the set of tags used by a user, say John.
2 Find the set of users that have used one of these tags.
3 Find the set of tags that these users have used.

Let’s write this query for John, whose user_id is 1. The query consists of three main parts.
 First, let’s write the query to get all of John’s tags. For this, we have to inner-join

tables user_item_tag and tags, and use the distinct qualifier to get unique tag IDs.

Select distinct t.tag_id, t.tag_text from tags t, user_item_tag uit where
 t.tag_id = uit.tag_id and uit.user_id = 1;

If you run this query, you’ll get the set (tagging, schema, denormalized, database, binary).
 Second, let’s use this query to find the users who’ve used one of these tags, as

shown in listing 3.1.

Select distinct uit2.user_id from user_item_tag uit2, tags t2 where
 uit2.tag_id = t2.tag_id and
 uit2.tag_id in (Select distinct t.tag_id from tags t, user_item_tag uit
wheret.tag_id = uit.tag_id and uit.user_id = 1)

Note that the first query:

Select distinct t.tag_id, t.tag from tags t, user_item_tag uit where
 t.tag_id = uit.tag_id and uit.user_id = 1

is a subquery in this query. The query selects the set of users and will return user_ids 1
and 2.

 Third, the query to retrieve the tags that these users have used is shown in listing 3.2

Select uit3.tag_id, t3.tag_id, count(*) from user_item_tag uit3, tags t3
whereuit3.tag_id = t3.tag_id and uit3.user_id
 in (Select distinct uit2.user_id from user_item_tag uit2, tags t2
where uit2.tag_id = t2.tag_id and
 uit2.tag_id in (Select distinct t.tag_id from tags t, user_item_tag uit
 where t.tag_id = uit.tag_id and uit.user_id = 1))
 group by uit3.tag_id

Note that this query was built by using the query developed in listing 3.1. The query
will result in six tags, which are shown in table 3.8, along with their frequencies.

Listing 3.1 Query for users who have used one of John’s tags

Listing 3.2 The final query for getting all tags that other users have used

subquery

Query1: What are the
tags used by John

Query 2: Who are the users
who have used the
following tags

Query 3: What are the tags that
the following users have used

Figure 3.13 Nesting queries
to get the set of tags used

68 CHAPTER 3 Extracting intelligence from tags
Now let’s move on to the second question: what other items are tagged similarly to a
given item? Let’s find the other items that are similarly tagged to item1.

 First, let’s get the set of tags related to item1, which has an item_id of 1—this set is
(tagging, schema, normalized):

Select uit.tag_id from user_item_tag uit, tags t where
 uit.tag_id = t.tag_id and
 uit.item_id = 1

Next, let’s get the list of items that have been tagged with any of these tags, along with
the count of these tags:

Select uit2.item_id, count(*) from user_item_tag uit2 where
 uit2.tag_id in (Select uit.tag_id from user_item_tag uit, tags t where
 uit.tag_id = t.tag_id and uit.item_id = 1)
 group by uit2.item_id

This will result in table 3.9, which shows the three items with the number of tags.

So far, we’ve looked at the normalized schema to represent a user, item, tags, and
users tagging an item. We’ve shown how this schema holds for two commonly used
queries. In chapter 12, we look at more advanced techniques—recommendation
engines—to find related items using the way items have been tagged.

 Next, let’s generalize the design from user tagging to also include the other two
ways of generating tags: professionally and machine-generated tags.
SCHEMA FOR PROFESSIONALLY AND MACHINE-GENERATED TAGS

We add a new table, item_tag, to capture the tags associated with an item by professional
editors or by an automated algorithm, as shown in figure 3.14. Note that there’s also a
weight column—this table is in essence storing the metadata related with the item.

 Finding tags and their associated weights for an item is simply with this query:

Select tag_id, weight from item_tag
 where item_id = ? and
tagging_source_id = ?

tag_id tag_text count(*)

1 tagging 1

2 schema 3

3 denormalized 1

4 database 2

5 binary 1

6 normalized 1

item_id count(*) Tags

1 3 tagging, schema, normalized

2 1 schema

3 1 schema

Table 3.8 The result for the query
to find other tags used by user 1

Table 3.9 Result of other items
that share a tag with another item

69Building tag clouds
In this section, we’ve developed the schema for persisting tags in your application.
Now, let’s look at how we can apply tags to your application. We develop tag clouds as
an instance of dynamic navigation, which we introduced in section 3.1.4.

3.5 Building tag clouds
In this section, we look at how you can build tag clouds in your application. We first
extend the persistence design to support tag clouds. Next, we review the algorithm to
display tag clouds and write some code to implement a tag cloud.

3.5.1 Persistence design for tag clouds

For building tag clouds, we need to get a list of tags and their relative weights. The rel-
ative weights of the terms are already captured in the item_tag table for professionally
generated and machine-generated tags. For user tagging, we can get the relative
weights and the list of tags for the tag cloud with this query:

Select t.tag, count(*) from user_item_tag uit, tags t where
 Uit.tag_id = t.tag_id group by t.tag

This results in table 3.10, which shows the six tags and their relative frequencies for
the example in section 3.3.3.

 The use of count(*) can have a nega-
tive effect on scalability. This can be elim-
inated by using a summary table. Further,
you may want to get the count of tags based
on different time windows. To do this, we
add two more tables, tag_summary and
days, as shown in figure 3.15. The tag_
summary table is updated on every insert in
the user_ item_tag table.

 The tag cloud data for any given day is
given by the following:

source_id int unsigned(10)
item_id int unsigned(10)
tag_id int unsigned(10)
weight double(22)

item_tag

create_date timestamp(19)

item_id=item_idtag_id=tag_id

source_id=source_id

int unsigned(10)tag_id
tag_text varchar(50)

tags

stemmed_text varchar(50)

int unsigned(10)source_id
source_name varchar(50)

tagging_source

int unsigned(10)item_id
name varchar(50)

item

Figure 3.14 Table to store the metadata associated with an item via tags

tag_text count(*)

tagging 1

schema 3

denormalized 1

database 2

binary 1

normalized 1

Table 3.10 Data for the tag
cloud in our example

70 CHAPTER 3 Extracting intelligence from tags
select t.tag, ts.number from tags t, tag_summary ts where
 t.tag_id = ts.tag_id and
 ts.day = 'x'

To get the frequency over a range of days, you have to use the sum function in this
design:

select t.tag, sum(ts.number) from tag tags t, tag_summary ts where
 t.tag_id = ts.tag_id and
 ts.day > 't1' and ts.day <'t2' group by t.tag

When a user clicks on a particular tag, we need to find out the list of items that have
been tagged with the tag of interest. There are a number of approaches to showing
results when a user clicks on a tag. The tag value could be used as an input to a search
engine or recommendation engine, or we can query the userItemTag or the itemTag
tables. The following query retrieves items from the userItemTag table:

select uit.item_id, count(*) from user_item_tag uit where
 uit.tag_id = ‘x’ group by uit.item_id

Similarly, for professional and automated algorithm generated tags we can write the
query

select item_id from item_tag where tag_id = ? order by weight desc

Since we’ve developed the database query for building the tag cloud, let’s next look
at how we can build a tag cloud after we have access to a list of tags and their
frequency.

3.5.2 Algorithm for building a tag cloud

There are five steps involved in building a tag cloud:

1 The first step in displaying a tag cloud is to get a list of tags and their frequen-
cies—a list of <Tag name, frequency>.

2 Next, compute the minimum and maximum occurrence of each tag. Let’s call
these numberMin and numberMax.

3 Decide on the number of font sizes that you want to use; generally this number
is between 3 and 20. Let’s call this number numberDivisions.

tag_id int unsigned(10)
day_id int unsigned(10)
number int unsigned(10)

tag_summary

tag_id=tag_id day_id=day_id

int unsigned(10)tag_id
tag_text varchar(50)

tags
int unsigned(10)day_id

day varchar(50)

tagging_source

tag_id day_id number

day_id day

1

2

222

123

212

01/01/07

01/02/07

2

2

1

1

1

1

Figure 3.15 The
addition of summary
and days tables

71Building tag clouds
4 Create the ranges for each font size. The formula for this is

For i = 1 to numberDivisions
 rangeLow = numberMin + (i – 1) * (numberMax – numberMin)/ numberDivisions
 high = numberMin + i*(numberMax - numberMin)/ numberDivisions

For example, if numberMin, numberMax, and numberDivisions are (20, 80, 3),
the ranges are (20–40, 40–60, 60–80).

5 Use a CSS stylesheet for the fonts and iterate over all the items to display the tag
cloud.

Though building a tag cloud is simple, it can be quite powerful in displaying the infor-
mation. Kevin Hoffmann, in his paper “In Search of … The Perfect Tag Cloud,” pro-
poses a logarithmic function—take the log of the frequency and create the buckets for
the font size based on their log value—to distribute the font size in a tag cloud.

 In my experience, when the weights for the tags have been normalized (when the
sum of squared values is equal to one), the linear scaling works fairly well, unless the
min or the max values are too skewed from the other values.

 Implementing a tag cloud is straightforward. It’s now time to roll up our sleeves
and write some code, which you can use in your application to implement a tag cloud
and visualize it.

3.5.3 Implementing a tag cloud

Figure 3.16 shows the class diagram for implementing a tag cloud. We also use this code
later on in chapter 8. We use the Strategy6 design pattern to factor out the scaling algo-
rithm used to compute the font size. It’s also helpful to define interfaces TagCloud and
TagCloudElement, as there can be different implementations for them.

 The remaining part of this section gets into the details of implementing the code
related to developing a tag cloud. Figure 3.16 shows the classes that we develop in this
section.

6 Gang of Four—Strategy pattern

<<Interface>>

TagCloud

getTagCloudElements()

I

<<Interface>>

FontSizeComputationStrategy

computeFontSize():void

I

TagCloudElementImpl C

I <<Interface>>

TagCloudElement

getTagText():String

getFontSize():String

setFontSize(in fonzSize:String):void

getWeight():double

<<realize>>

<<realize>>

TagCloudImpl C

Figure 3.16 Class design
for implementing a tag cloud

72 CHAPTER 3 Extracting intelligence from tags
TAGCLOUD

First, let’s begin with the TagCloud interface, which is shown in listing 3.3.

package com.alag.ci.tagcloud;

import java.util.List;

public interface TagCloud {
 public List<TagCloudElement> getTagCloudElements();
}

This is simple enough, and has one method to get the List of TagCloudElements.
TAGCLOUDELEMENT

The TagCloudElement interface corresponds to a tag and contains methods to get the
tag text, the tag weight, and the computed font size. This is shown in listing 3.4 .

package com.alag.ci.tagcloud;

public interface TagCloudElement extends Comparable<TagCloudElement> {
 public String getTagText();
 public double getWeight();
 public String getFontSize();
 public void setFontSize(String fontSize);
}

The TagCloudElement interface extends the Comparable interface, which allows Tag-
Cloud to return these elements in a sorted manner. I’ve used a String for the font
size, as the computed value may correspond to a style sheet entry in your JSP. Also a
double is used for the getWeight() method.
FONTSIZECOMPUTATIONSTRATEGY

The FontSizeComputationStrategy interface has only one method, as shown in list-
ing 3.5.

package com.alag.ci.tagcloud;

import java.util.List;

public interface FontSizeComputationStrategy {
 public void computeFontSize(List<TagCloudElement> elements);
}

The method

void computeFontSize(List<TagCloudElement> elements);

computes the font size for a given List of TagCloudElements.
TAGCLOUDIMPL

TagCloudImpl implements the TagCloud and is fairly simple, as shown in listing 3.6.

Listing 3.3 The TagCloud interface

Listing 3.4 The TagCloudElement interface

Listing 3.5 The FontSizeComputationStrategy interface

Double to represent
relative weight

Extends Comparable to sort entries

73Building tag clouds
package com.alag.ci.tagcloud.impl;

import java.util.*;

import com.alag.ci.tagcloud.*;

public class TagCloudImpl implements TagCloud {

 private List<TagCloudElement> elements = null;

 public TagCloudImpl(List<TagCloudElement> elements,
 FontSizeComputationStrategy strategy) {
 this.elements = elements;
 strategy.computeFontSize(this.elements);
 Collections.sort(this.elements);
 }

 public List<TagCloudElement> getTagCloudElements() {
 return this.elements;
 }

//to String
}

It has a list of TagCloudElements and delegates the task of computing the font size to
FontSizeComputationStrategy, which is passed in its constructor. It also sorts the
List<TagCloudElement> elements alphabetically.
TAGCLOUDELEMENTIMPL

TagCloudElementImpl is shown in listing 3.7.

package com.alag.ci.tagcloud.impl;

import com.alag.ci.tagcloud.TagCloudElement;

public class TagCloudElementImpl implements TagCloudElement {
 private String fontSize = null;
 private Double weight = null;
 private String tagText = null;

 public TagCloudElementImpl(String tagText, double tagCount) {
 this.tagText = tagText;
 this.weight = tagCount;
 }

 public int compareTo(TagCloudElement o) {
 return this.tagText.compareTo(o.getTagText());
 }

//get and set methods
}

TagCloudElementImpl is a pure bean object that implements the Comparable inter-
face for alphabetical sorting of tag texts as shown in listing 3.7.
FONTSIZECOMPUTATIONSTRATEGYIMPL

The implementation for the base class FontSizeComputationStrategyImpl is more
interesting and is shown in listing 3.8.

Listing 3.6 Implementation of TagCloudImpl

Listing 3.7 The implementation of TagCloudElementImpl

FontSizeComputationStrategy
computes font size

Sorts entries
alphabetically

Implements
Comparable for
alphabetical sorting

74 CHAPTER 3 Extracting intelligence from tags
package com.alag.ci.tagcloud.impl;

import java.util.List;

import com.alag.ci.tagcloud.*;

public abstract class FontSizeComputationStrategyImpl implements
 FontSizeComputationStrategy {
 private static final double PRECISION = 0.00001;
 private Integer numSizes = null;
 private String prefix = null;

 public FontSizeComputationStrategyImpl(int numSizes, String prefix) {
 this.numSizes = numSizes;
 this.prefix = prefix;
 }

 public int getNumSizes() {
 return this.numSizes;
 }

 public String getPrefix() {
 return this.prefix;
 }

 public void computeFontSize(List<TagCloudElement> elements) {
 if (elements.size() > 0) {
 Double minCount = null;
 Double maxCount = null;
 for (TagCloudElement tce: elements) {
 double n = tce.getWeight();
 if ((minCount == null) || (minCount > n)) {
 minCount = n;
 }
 if ((maxCount == null) || (maxCount < n)) {
 maxCount = n;
 }
 }
 double maxScaled = scaleCount(maxCount);
 double minscaled = scaleCount(minCount);
 double diff = (maxScaled - minscaled)/(double)this.numSizes;
 for (TagCloudElement tce: elements) {
 int index = (int)
 Math.floor((scaleCount(tce.getWeight()) - minscaled)/diff);
 if (Math.abs(tce.getWeight() - maxCount) < PRECISION) {
 index = this.numSizes - 1;
 }
 tce.setFontSize(this.prefix + index);
 }
 }
 }
 protected abstract double scaleCount(double count) ;
}

Listing 3.8 Implementation of FontSizeComputationStrategyImpl

Used to check
equality of doubles

Compute min
and max count

Scale the
counts

Compute
appropriate
font bucket

Abstract forces
inheriting classes
to implement

75Building tag clouds
This takes in the number of font sizes to be used and the prefix to be set for the font.
In your application, there might be an enumeration of fonts and you may want to use
Enum for the different fonts. I’ve made the class abstract to force the inheriting
classes to overwrite the scaleCount method, as shown in figure 3.16.

 The method computeFontSize first gets the minimum and the maximum and then
computes the bucket for the font size using the following:

 for (TagCloudElement tce: elements) {
 int index = (int) Math.floor((scaleCount(tce.getWeight()) –
 minscaled)/diff);
 if (Math.abs(tce.getWeight() - maxCount) < PRECISION){
 index = this.numSizes - 1;
 }
 tce.setFontSize(this.prefix + index);
 }
 }

To understand the formula used to calculate the font index, let, x be the scaled value
of the number of times a tag appears then that tag falls in bin n, where

Note that when x is the same as maxscaled, n is numSizes. This is why there’s a check for
maxCount:

if (tce.getWeight() == maxCount) {

This implementation is more efficient than creating an array with the ranges for each
of the bins and looping through the elements.
EXTENDING FONTSIZECOMPUTATIONSTRATEGYIMPL

Lastly, the two classes extending FontSizeComputationStrategyImpl simply need to
implement the scaleCount method and have a constructor that calls super, as shown
in figure 3.17.

 First, let’s look at the implementation of LinearFontSizeComputationStrategy,
which simply overrides the scaleCount method:

n x min scaled)–(
max scaled min scaled)–(

--numSizes=

<<Interface>>

FontSizeComputationStrategy

computeFontSize():void

I

FontSizeComputationStrategyImpl C

LinearFontSizeComputationStrategyC

LogFontSizeComputationStrategyC

<<realize>>

Figure 3.17 The class diagram for
FontSizeComputationStrategy

76 CHAPTER 3 Extracting intelligence from tags
 protected double scaleCount(double count) {
 return count;
 }

Similarly, LogFontSizeComputationStrategy implements the same method as the
following:

 protected double scaleCount(double count) {
 return Math.log10(count);
 }

You can implement your own variant of the FontSizeComputationStrategy by simply
overwriting the scaleCount method. Some other strategies that you may want to con-
sider are using clustering (see chapter 9) or assigning the same number of items (or
nearly the same) for each of the font sizes. For this, sort the items by weight and assign
the items to the appropriate bins.

 Now that we’ve implemented a tag cloud, we need a way to visualize it. Next, we
develop a simple class to generate HTML to display the tag cloud.

3.5.4 Visualizing a tag cloud

We use the Decorator design pattern, as shown in figure 3.18, to define an inter-
face VisualizeTagCloudDecorator. It takes in a TagCloud and generates a String
representation.

The code for VisualizeTagCloudDecorator is shown in listing 3.9.

package com.alag.ci.tagcloud;

public interface VisualizeTagCloudDecorator {
 public String decorateTagCloud(TagCloud tagCloud);
}

There’s only one method to create a String representation of the TagCloud:

public String decorateTagCloud(TagCloud tagCloud);

Let’s write a concrete implementation of HTMLTagCloudDecorator, which is shown in
listing 3.10.

Listing 3.9 VisualizeTagCloudDecorator interface

<<Interface>>

VisualizeTagCloudDecorater

decorateTagCloud():String

I

HTMLTagCloudDecorater C

<<realize>>

<<Interface>>

TagCloud

getTagCloudElements()

I

Figure 3.18 Using the Decorator pattern to
generate HTML to represent the tag cloud

77Building tag clouds
package com.alag.ci.tagcloud.impl;

import java.io.StringWriter;
import java.util.*;

import com.alag.ci.tagcloud.*;

public class HTMLTagCloudDecorator implements VisualizeTagCloudDecorator {
 private static final String HEADER_HTML =
 "<html>
<head>
<title>TagCloud
</title>
</head>";
 private static final int NUM_TAGS_IN_LINE = 10;
 private Map<String, String> fontMap = null;

 public HTMLTagCloudDecorator() {
 getFontMap();
 }

 private void getFontMap() {
 this.fontMap = new HashMap<String,String>();
 fontMap.put("font-size: 0", "font-size: 13px");
 fontMap.put("font-size: 1", "font-size: 20px");
 fontMap.put("font-size: 2", "font-size: 24px");
 }

 public String decorateTagCloud(TagCloud tagCloud) {
 StringWriter sw = new StringWriter();
 List<TagCloudElement> elements = tagCloud.getTagCloudElements();
 sw.append(HEADER_HTML);
 sw.append("
<body><h3>TagCloud (" + elements.size() +")</h3>");
 int count = 0;
 for (TagCloudElement tce : elements) {
 sw.append(" <a style=\""+
 fontMap.get(tce.getFontSize())+";\">");
 sw.append(tce.getTagText() +" ");
 if (count++ == NUM_TAGS_IN_LINE) {
 count = 0;
 sw.append("
");
 }
 }
 sw.append("
</body>
</html>");
 return sw.toString();
 }
}

Here, the title of the generated page is hard-coded to TagCloud:

private static final String HEADER_HTML =
 "<html>
<head>
<title>TagCloud
</title>
</head>";

The method getFontMap() simply creates a Map of font strings that will be used:

 private void getFontMap() {
 this.fontMap = new HashMap<String,String>();
 fontMap.put("font-size: 0", "font-size: 13px");
 //... other font mapping
 }

Listing 3.10 Implementation of HTMLTagCloudDecorator

Get mapping
from font-bin
or XML file

Generates
HTML file

78 CHAPTER 3 Extracting intelligence from tags
For your application, you’ll probably read this mapping from an XML file or from the
database.

 The rest of the code generates the HTML for displaying the tag cloud:

 for (TagCloudElement tce : elements) {
 sw.append(" <a style=\""+
 fontMap.get(tce.getFontSize())+";\">");
 sw.append(tce.getTagText() +" ");
 if (count++ == NUM_TAGS_IN_LINE) {
 count = 0;
 sw.append("
");
 }
 }

A simple test program is shown in listing 3.11. The asserts have been removed to make
it easier to read. This code creates a TagCloud and creates an HTML file to display it.

package com.alag.ci.tagcloud.test;

import java.io.*;
import java.util.*;

import com.alag.ci.tagcloud.*;
import com.alag.ci.tagcloud.impl.*;

import junit.framework.TestCase;

public class TagCloudTest extends TestCase {

 public void testTagCloud() throws Exception {
 String firstString = "binary";
 int numSizes = 3;
 String fontPrefix = "font-size: ";

 List<TagCloudElement> l = new ArrayList<TagCloudElement>();
 l.add(new TagCloudElementImpl("tagging",1));
 l.add(new TagCloudElementImpl("schema",3));
 l.add(new TagCloudElementImpl("denormalized",1));
 l.add(new TagCloudElementImpl("database",2));
 l.add(new TagCloudElementImpl(firstString,1));
 l.add(new TagCloudElementImpl("normalized",1));

 FontSizeComputationStrategy strategy =
 new LinearFontSizeComputationStrategy(numSizes,fontPrefix);
 TagCloud cloudLinear = new TagCloudImpl(l,strategy);
 System.out.println(cloudLinear);

 strategy = new LogFontSizeComputationStrategy(numSizes,fontPrefix);
 TagCloud cloudLog = new TagCloudImpl(l,strategy);
 System.out.println(cloudLog);

 //write to file
 String fileName = "testTagCloudChap3.html";
 writeToFile(fileName,cloudLinear);
 }

 private static void writeToFile(String fileName, TagCloud cloud)

Listing 3.11 Sample code for generating tag clouds

79Finding similar tags
 throws IOException {
 BufferedWriter out = new BufferedWriter(
 new FileWriter(fileName));
 VisualizeTagCloudDecorator decorator = new HTMLTagCloudDecorator();
 out.write(decorator.decorateTagCloud(cloud));
 out.close();
 }
}

A TagCloud is created by the following code:

 List<TagCloudElement> l = new ArrayList<TagCloudElement>();
 l.add(new TagCloudElementImpl("tagging",1));
....
 FontSizeComputationStrategy strategy =
 new LinearFontSizeComputationStrategy(numSizes,fontPrefix);
 TagCloud cloudLinear = new TagCloudImpl(l,strategy);

The method writeToFile simply writes the generated HTML to a specified file:

 BufferedWriter out = new BufferedWriter(
 new FileWriter(fileName));
 VisualizeTagCloudDecorator decorator = new HTMLTagCloudDecorator();
 out.write(decorator.decorateTagCloud(cloud));
 out.close();

Figure 3.19 shows the tag cloud developed for our example.7 Note that schema has the
biggest font, followed by database.

In this section, we developed code to implement and visualize a tag cloud. Next, let’s
look at a few interesting topics related to tags that you may run into in your application.

3.6 Finding similar tags
As of February 2007, 35 percent8 of all posts tracked by Technorati used tags. As of Octo-
ber 2006, Technorati was tracking 10.4 million tags. There were about half a million
unique tags in del.icio.us, as of October 2005, with each item averaging about two tags.
Given the large number of tags, a good question is how to find tags that are related to
each other—tags that are synonymous or that show a parent-child relationship. Building
this manually is too expensive and nonscalable for most applications.

 A simple approach to finding similar tags is to stem—convert the word into its root
form—to take care of differences in tags due to plurals after removing stop

7 Both the linear and logarithmic functions gave the same font sizes for this simple example when three font
sizes were used, but they were different when five were used.

8 http://technorati.com/weblog/2007/04/328.html

Figure 3.19 The tag
cloud for our example

http://technorati.com/weblog/2007/04/328.html

80 CHAPTER 3 Extracting intelligence from tags
words—commonly occurring words. Having a synonym dictionary also helps keep
track of tags that are similar. When dealing with multi-term phrases, two tags could be
similar but may have their terms in different positions. For example, weight gain and
gain weight are similar tags.

 Another approach is to analyze the co-occurrences of tags. Table 3.11 shows data
that can be used for this analysis. Here, the rows correspond to tags and the columns
are the items in your system. There’s a 1 if an item has been tagged with that tag. Note
the similarity to the table we looked at in section 2.4. You can use the correlation simi-
larity computation to find correlated tags. Matrix dimensionality reduction using
Latent Semantic Indexing (LSI) is also used (see section 12.3.3). LSI has been used to
solve the problems of synonymy and polysemy.

When finding items relevant to a tag, don’t forget to first find a similar set of tags to the
tag of interest and then find items related to the tag by querying the item_tag table.

3.7 Summary
Tagging is the process of adding freeform text, either words or small phrases, to items.
These keywords or labels can be attached to anything—another user, photos, articles,
bookmarks, products, blog entries, podcasts, videos, and more. Tagging enables users
to associate freeform text with an item, in a way that makes sense to them, rather than
using a fixed terminology that may have been developed by the content owner.

 There are three ways to generate tags: have professional editors create tags, allow
users to tag items, or have an automated algorithm generate tags. Tags serve as a com-
mon vocabulary to associate metadata with users and items. This metadata can be
used for personalization and for targeting search to a user.

 User-centric applications no longer rigidly categorize items. They offer dynamic
navigation, which is built from tags to their users. A tag cloud is one example of
dynamic navigation. It visually represents the term vector—tags and their relative
weights. We looked at how tags can be persisted in your application and how you can
build a tag cloud.

 In the next chapter, we look at the different kinds of content that are used in appli-
cation and how they can be abstracted from an analysis point of view. We also demon-
strate the process of generating a term vector from text using a simple example.

Item 1 Item 2 Item 3

Tag1 1

Tag2 1 1

Tag3 1 1
Table 3.11 Bookmarking data for analysis

81Resources
3.8 Resources
 “All of Web2.0.” Chrisekblog, http://chrisek.com/wordpress/2006/10/03/all-of-web-20/
 “Building a tag cloud in Java.” http://randomcoder.com/articles/building-a-tag-cloud-in-java
 “Everything Web2.0.” Matt’s blog. http://yahoolog.com/blog/?p=94
 Freitag,Pete. “How to make a tag cloud.” http://www.petefreitag.com/item/396.cfm
 Gamma, Eric, et. al. Design Patterns - Elements of Reusable Object-Oriented Software. 1995,

Addison-Wesley Professional.
 Green,Heather. “A Tag Team’s Novel Net Navigation.” BusinessWeek. February 28, 1995. http://

www.businessweek.com/technology/content/feb2005/
tc20050228_6395_tc024.htm?chan=search

 Grossman, Frieder. Information Retrieval: Algorithms and Heuristics. 2006. Springer.
 Hoffman, Kevin. “In Search of a Perfect Tag Cloud.” http://files.blog-city.com/files/J05/

88284/b/insearchofperfecttagcloud.pdf
 “Homonyms.” wikipedia.org, http://en.wikipedia.org/wiki/Homonyms
 Keller, Philipp. “Tags Database Schema.” http://www.pui.ch/phred/archives/2005/04/

tags-database-schemas.html
 Konchady, Manu. “Text Mining Application Programming.” 2006. Thomson Delmar Learning.
 Kopelman, Josh. “53,651.” May 2006. http://redeye.firstround.com/2006/05/53651.html
 MySQLicious. http://nanovivid.com/projects/mysqlicious/
 “Nielsen Net Ratings Announces February U.S Search Share Rankings.” January, 2008. http://

www.nielsen-netratings.com/pr/pr_080118.pdf
 Pipes, Jay. “Tagging and Folksonomy Schema Design for Scalability and Performance.” MySQL

Inc.
 “Polysemy.” wikipedia.org, http://en.wikipedia.org/wiki/Polysemy
 Scuttle. http://sourceforge.net/projects/scuttle/
 Sinha,Rashmi. “A social analysis of tagging (or how tagging transforms the solitary browsing

experience into a social one).” January 18, 2006. http://www.rashmisinha.com/archives/
06_01/social-tagging.html

 “Tag Schema.” MySQL Inc. http://forge.mysql.com/wiki/TagSchema#
Tagging_and_Folksonomy_Schema_Concepts

 “Tagcloud examples.” http://microformats.org/wiki/tagcloud-examples
 Toxi. http://toxi.co.uk/
 “Zoom Clouds.” http://zoomclouds.egrupos.net/

http://chrisek.com/wordpress/2006/10/03/all-of-web-20/
http://randomcoder.com/articles/building-a-tag-cloud-in-java
http://yahoolog.com/blog/?p=94
http://www.petefreitag.com/item/396.cfm
http:// www.businessweek.com/technology/content/feb2005/tc20050228_6395_tc024.htm?chan=search
http:// www.businessweek.com/technology/content/feb2005/tc20050228_6395_tc024.htm?chan=search
http:// www.businessweek.com/technology/content/feb2005/tc20050228_6395_tc024.htm?chan=search
http://files.blog-city.com/files/J05/88284/b/insearchofperfecttagcloud.pdf
http://files.blog-city.com/files/J05/88284/b/insearchofperfecttagcloud.pdf
http://en.wikipedia.org/wiki/Homonyms
http://www.pui.ch/phred/archives/2005/04/ tags-database-schemas.html
http://www.pui.ch/phred/archives/2005/04/ tags-database-schemas.html
http://redeye.firstround.com/2006/05/53651.html
http://nanovivid.com/projects/mysqlicious/
http://www.nielsen-netratings.com/pr/pr_080118.pdf
http://www.nielsen-netratings.com/pr/pr_080118.pdf
http://en.wikipedia.org/wiki/Polysemy
http://sourceforge.net/projects/scuttle/
http://www.rashmisinha.com/archives/06_01/social-tagging.html
http://www.rashmisinha.com/archives/06_01/social-tagging.html
http://forge.mysql.com/wiki/TagSchema# Tagging_and_Folksonomy_Schema_Concepts
http://forge.mysql.com/wiki/TagSchema# Tagging_and_Folksonomy_Schema_Concepts
http://microformats.org/wiki/tagcloud-examples
http://toxi.co.uk/
http://zoomclouds.egrupos.net/

Extracting
 intelligence from content
Content as used in this chapter is any item that has text associated with it. This text
can be in the form of a title and a body as in the case of articles, keywords associ-
ated with a classification term, questions and answers on message boards, or a sim-
ple title associated with a photo or video. Content can be developed either
professionally by the site provider or by users (commonly known as user-generated
content), or be harvested from external sites via web crawling.1

 Content is the fundamental building block for developing applications. This chap-
ter provides background on integrating and analyzing content in your application.

This chapter covers
■ Architecture for integrating various types of content
■ A more detailed look at blogs, wikis, and message

boards
■ A working example of extracting intelligence from

unstructured text
■ Extracting intelligence from different types of content

1 Web crawling is covered in chapter 6.
82

83Content types and integration
It’ll be helpful to go through the example developed in section 4.3, which illustrates how
intelligence can be extracted from analyzing content.

 In this chapter, we take a deeper look into the many types of content, and how they
can be integrated into your application for extracting intelligence. A book on collec-
tive intelligence wouldn’t be complete without a detailed discussion of content types
that get associated with collective intelligence and involve user interaction: blogs,
wikis, groups, and message boards. Next, we use an example to demonstrate step by
step how intelligence can be extracted from content. Having learned the similarities
among these content types, we create an abstraction model for analyzing the content
types for extracting intelligence.

4.1 Content types and integration
Classifying content into different content types and mapping each content type into
an abstraction (see section 4.4) allows us to build a common infrastructure for han-
dling various kinds of content.

 In this section, we look at the many forms of content in an application and the var-
ious forms of integration that you may come across to integrate these content types.

4.1.1 Classifying content

Table 4.1 shows some of the content types that are used in applications along with the
way they’re typically created. Chances are that you’re already familiar with most of the
content types.

Table 4.1 The different content types

Content type Description Source

Articles Text on a particular topic. Has a title, body,
and, optionally, subtitles.

Professionally created, user-gen-
erated, news feeds, aggregated
from other sites

Products An item being sold on your site. Typically has
title, description, keywords, reviews, ratings,
other attributes such as price, manufacturer,
and availability in particular geographic location.

Created by the site, user-gener-
ated in a marketplace like eBay,
linking to partner sources

Classification
terms

Ad hoc terms, such as collective intelligence
with keywords or tags associated with them.
Created for user navigation.

Professionally created, machine-
generated; user tagging is also
an instance of this

Blogs Online personal journals where you write about
things you want to share with others; others can
comment on your entries and link to your site.

Site management, company
employees, user-generated

Wikis Online collaboration tool where users can very
easily edit, add, or delete web pages.

Mainly user-generated

Groups and
message boards

Places where you can place questions and oth-
ers can respond to them, as well as rate them
for usefulness. Mainly in the form of questions
and answers.

Mainly user-generated, expert
answers may be provided by
experts working for the site

84 CHAPTER 4 Extracting intelligence from content
You’re probably familiar with articles and products. We talked about classification
terms in section 3.2.1 and their use for dynamic navigation links. Classification terms
are any ad hoc terms that may be created; they’re similar to topic headers. An exam-
ple best illustrates them.

 Let’s say that one of the features in your application is focused on providing rele-
vant news items. You know that global warming is an important area of interest to your
users. So you create the classification term global warming and assign it appropriate
tags or keywords. Then the process of finding relevant content for this term for a user
can be treated as a classification problem—using the user’s profile and the keywords
assigned to the term, find other items that the user will be interested in. The other
content types could be news articles, blog entries, information from message boards
and chat logs, videos, and so on.

 Another manifestation of classification terms is when information is extracted from
a collection of content items to create relevant keywords. In the previous example,
rather than assigning tags or keywords to the term global warming, you’d take a set of
items that you think best represents the topic and let an automated algorithm extract
tags from the set of articles. In essence, you’ll get items that are similar to the set of
learning items.

 In section 4.2, we take a more detailed look at three content types that are nor-
mally associated with collective intelligence: blogs, wikis, and groups and message

Photos and video Rich media in the form of photos and videos. Professionally created,
user-generated

Polls Questions asked of a user, with the response
being one of a handful of options.

Professionally or user-generated

Search terms Search queries by user. Similar to dynamic
classification.

User-generated

Profile pages Profile page for a user. Typically, created by the
user listing preferences and information about
the user.

User-generated

Tools and
worksheets

Tools and worksheets that may be available at
the site.

Professionally created

Chat logs Transcripts of online chats. Expert talking to users, users
talking to users

Reviews Reviews about an item, which could be any of
the other content types.

Professionally or user-generated

Classifieds Advertisements with a title and a body. Option-
ally, may have keywords associated with it.

Professionally or user-generated

Lists List of items—any of the other content
types—combined together.

Professionally or user-generated

Table 4.1 The different content types (continued)

Content type Description Source

85Content types and integration
boards. All three of these involve user-generated content. The remaining content
types are fairly straightforward.

 So far we’ve looked at some of the different kinds of content that you may use in
your application. We need to integrate these content types into our intelligence learn-
ing services that we talked about in section 2.1.

4.1.2 Architecture for integrating content

At the beginning of chapter 2, we looked at the architecture for integrating intelli-
gence into your application. Let’s extend it for integrating content into your applica-
tion. Based on your business requirements and existing infrastructure, you’ll face one
of the following three ways to integrate content into your application:

1 Use standalone, freely available open source or commercial software within
your firewall, hosted as a separate instance.

2 Rebuild the basic functionality within your application.
3 Integrate data from an externally hosted site.

This section covers how each of these cases can be integrated into your application to
extract data. There are two forms of information that we’re interested in:

■ The user interaction with the content. This could be in the form of authoring
the content, rating it, reading it, bookmarking it, sharing it with others, and
so on.

■ The actual content itself. We need it to index it in our search engine and
extract metadata from it.

Let’s look at the first case, in which the functionality is available in a server hosted
within your firewall but as a separate instance.
INTERNALLY HOSTED SEPARATE INSTANCE

Figure 4.1 shows the architecture for inte-
grating content from separate servers
hosted within your firewall. Here, the
application server could either make REST
calls to the other server or redirect the
HTTP request to the external server. Since
all calls go through the application server,
both user interaction information and the
content when edited can be persisted to
the database for use by the intelligence
learning services.
INTEGRATED INTO THE APPLICATION

The second case is when the basic functionality for the feature—for example,
blogs—is built within the web app of your application server. You may choose this
approach to integrate this functionality into your application when you need a lot
more control over the look-and-feel than hosting it as a separate instance. In this case,
the architecture for learning is the same as we covered in section 2.1.

Blog
Server

Applica�on
Server

Redirect H�p
Request

Persist Data for Learning

User Request

Render Response

Intelligence
Learning
Services

Figure 4.1 Architecture for integrating internally
hosted separate instances server

86 CHAPTER 4 Extracting intelligence from content
EXTERNALLY HOSTED

Many times you may have a relationship with an external vendor to outsource certain
features of your application, or need to integrate content from another partner. The
simplest way to integrate is to provide a link to the externally hosted server. In essence,
as users click on the link, they’re transferred to the other site—your application loses
the user. There’s no information available to your application, unless the external site
posts you that information, as to what the user did on the site. If you want to learn
from what users did at the external site, you’ll need their user-interaction information
and the text for the content.

 Another challenge is coordinating sessions. The user’s session shouldn’t time out
in your application as she interacts on the other site. Managing single-signons and
receiving data are some of the technical challenges that you’ll face in this approach.
Though this is probably the easiest approach to add new functionality, it’s the least
user friendly and least desirable approach from an intelligence point of view.

 So far, we’ve classified content into different content types and looked at three
ways of integrating them in your application. Next, let’s take a more detailed look at a
few of the content types that are associated with collective intelligence.

4.2 The main CI-related content types
In this section, we look at three content types that are typically associated with collec-
tive intelligence: blogs, wikis, and groups and message boards. All these content types
are user generated, and users through their opinions and contributions with these
content types shape the thoughts of others.

 User-generated content plays an important part in influencing others—here’s an
example of how they affected me last year. Last summer, my printer stopped working
after I’d changed the cartridge. After reinstalling the cartridge a few times and trying
to print, I gave up. On searching the web, I found an online community where others
had written in detail about similar problems with the same brand of printer. Evidently,
there was a problem with the way the printing head was designed that caused it to fail
occasionally while changing cartridges. Going through the postings, I found that initially
a number of users had expressed their frustration at the failure of the printer, promising
never to buy again from the vendor. After a few initial postings, I found that someone
had left information about how to contact the customer support department for the ven-
dor. The manufacturer was shipping an upgraded version of the printer to anyone who
had experienced the problem. The recent postings tended to have a positive tone, as the
users got a brand-new printer from the manufacturer. The next morning, I called the
manufacturer’s customer support number and had a new printer in a few days.

 For each of these three content types, we describe what they are and how they are
used, and model the various elements and develop the persistence schema. We use
blogs as an example to illustrate the process of extracting intelligence from content in
the second and third part of the book. It’s therefore helpful to understand the struc-
ture of a blog in detail.

87The main CI-related content types
4.2.1 Blogs

Blogs, short for weblogs, are online personal journals where you write about things you
want to share with others; others can comment on your entries and link to your site.
Blogs typically are written in a diary style and contain links to other websites. There
are blogs on virtually every topic; a blog may cover a range of topics from the personal
to the political, or focus on one narrow subject.
USE OF BLOGS

As a part of writing this book, I went through numerous blogs. There were blogs on
almost every topic covered in this book, as you can see from the references in the vari-
ous chapters. The popularity of blogs can be measured by both the number of blogs in
the blogosphere and the references to blogs that people cite in publications.

 Blogs appear in three different contexts:

1 In a corporate website —Corporations use blogs to connect with their sharehold-
ers, customers, staff, and others. Blogs can be used to solicit feedback on impor-
tant decisions and policies. Blogs also serve as a good forum for conveying the
rationale for certain decisions or policies and for getting feedback on product
features that you’re developing. An internal blog within the company may be a
good medium for groups to collaborate together, especially if they’re geograph-
ically dispersed. Similarly, consultants often develop their brands and reputa-
tions with their blogs.

2 Within your application —Applications can leverage blogs both internally and
externally by providing contextually relevant information. Allowing users to
blog within your application generates additional content that can be viewed by
others. User-generated content and blogging in particular can help improve
the visibility of your application and boost your search index ranking. If your
blog is widely followed, with a number of people linking to it, it’ll show up
higher in search engine results. Furthermore, if your application or corporate
website is linked to your blog, its ranking will be boosted further, since it’s con-
nected to a highly linked page.

3 All other blogs in the blogosphere —Other blogs in the blogosphere can have an
impact on your brand. A favorable blog entry by an influential person can cre-
ate a buzz around your product, while a negative reference could spell doom
for the product.

So far we’ve looked at what blogs are and how they’re used. If you’re thinking of
building blogs in your application, it’s useful to look at the various elements of a blog.
Reviewing the class diagram to model blogs and a typical persistence schema for blogs
should help you understand the basic elements. This information will also be useful in
the next chapter, where we look at searching the blogosphere. We review these next.
MODELING THE ELEMENTS OF BLOG

As shown in figure 4.2, a Blog consists of a number of blog entries such as BlogEntry—a
BlogEntry is fully contained in a Blog. Associated with a BlogEntry are comments
made by others, represented as a List of BlogEntryComments. The BlogEntry may

88 CHAPTER 4 Extracting intelligence from content
have been tagged by the author; this is contained in BlogEntryTag. References by
other blogs are contained in a List of ReferenceWeblogs.

 Using the class diagram, we can build a corresponding persistence schema for
blogs using five tables, as described in table 4.2.

Figure 4.3 shows the persistence schema for a blog. There are a few things to note
about the schema design. If you want to keep a history of modifications made by users
in their blog entries, you need to have a version_id associated with every blog entry.
This gets updated after every modification. There’s a corresponding history table
blog_entry_history that can be populated via a database trigger.

 Using the class diagram and the persistence schema, you should have a good
understanding of elements of a blog, blog entries, blog comments, and reference

Table 4.2 Description of the tables used for persistence

Table Description

blog Represents the blogs for the various users.

blog entry Each blog entry is represented as a row. If you allow users to modify their blogs
and want to keep a history of changes then you need to keep a version ID. The
version id is incremented after every modification to the blog-entry.

blog entry history This is a history table that’s updated via a trigger whenever there’s a modifi-
cation to the BlogEntry table. The primary key for this table is blog
entry id, version id.

reference-weblog Stores the list of blogs referencing the blog entry.

blog Entry comment This stores the list of comments associated with the blog entry.

Figure 4.2 Class model for representing a blog for a user

89The main CI-related content types
weblogs. This information is also useful in the next chapter, which deals with searching
the blogosphere. Next, we briefly look at the second content type that is associated
with collective intelligence: wikis.

4.2.2 Wikis

In May 2006, Meebo (www.meebo.com) was getting requests for Spanish-language
translations of its application. Meebo is a startup company that uses AJAX to build a
browser-based application that can connect to multiple instant messengers in one
location. Meebo set up a wiki and allowed their users to submit translations in differ-
ent languages. Last I checked, there were more than 90 different languages that users
were contributing to.

 Wikipedia, with more than five million articles in 229 languages, is probably the
poster child of how wikis can be used to develop new applications. Wikipedia is cited
by Alexa as one of the top 20 visited sites and is widely cited. If you’re interested in a
topic and search for it, chances are that a Wikipedia article will show up in the first

Figure 4.3 Persistence schema for blogs

www.meebo.com

90 CHAPTER 4 Extracting intelligence from content
few listings—the breadth of topics, number of articles, and the large number of
external sites (blogs, articles, publications) linking to its articles boost the ranking of
Wikipedia pages.

 Wikis are good for online collaboration, since users can easily edit, add, or delete
web pages. All changes are stored in the database. Each modification can be reviewed
and information can be reverted back if required. The wiki style of development pro-
motes consensus or democratic views on a topic.

 We briefly review how wikis are used. Model the elements of a wiki and develop its
persistence model to understand a wiki’s core components.
USE OF WIKIS

Nowadays, almost all software projects use a wiki as a collaboration tool for document-
ing and developing software. There are a number of open source wiki implementa-
tions, so the cost associated with having a wiki is low. Table 4.3 list some of the ways
that wikis are used.

There are literally hundreds of Wiki software programs available in dozens of lan-
guages (see http://c2.com/cgi/wiki?WikiEngines). Wikipedia has a good comparison
between the features of the top WikiEngines at http://en.wikipedia.org/wiki/
Comparison_of_wiki_software. There is good infor-
mation on how to choose a Wiki at http://c2.com/
cgi/wiki?ChoosingaWiki.
MODELING THE USERS, PAGES, AND CATEGORIES

Every wiki consists of a number of categories. Within
each category are zero or more pages, as shown in fig-
ure 4.4. A page can belong to one or more categories.

Table 4.3 Uses of wikis

Use Description

Online collaboration They’re good for online collaborations between groups. Each person can con-
tribute her thoughts and the information is accessible to anyone with access
to the wiki.

Harnessing user contri-
butions—crowd sourcing

Wikis are good at involving your users to develop your product. You may want
to start a wiki in your application, perhaps to develop an FAQ, an installation
guide, help section, or anything where the collective power of user contribu-
tions can be leveraged. Users get a sense of ownership and cover a wide range
of use cases that would otherwise be too difficult or expensive to build.

Boosting search engine
ranking

As with all user-generated content, wiki content, especially if it’s extensively
linked, can help improve the search rank visibility of your application.

Knowledge repository How many times have you been working on a project and someone starts an
email chain discussing an issue? As the email chain gets longer and longer,
it’s more and more difficult and time consuming to keep up with it. This infor-
mation is also available to only those who participate in the email chain. The
barrage of emails can also slow productivity for those who don’t want to actively
participate in the discussion. Wikis offer an excellent alternative. Unlike email,
Wiki content is available for anyone and can be searched and retrieved easily.

PageCategory

0, .. *1, .. *

User

creates
updates

Figure 4.4 Relationship between a
page, a category, and a user in a wiki

http://c2.com/cgi/wiki?WikiEngines
http://en.wikipedia.org/wiki/Comparison_of_wiki_software
http://en.wikipedia.org/wiki/Comparison_of_wiki_software
http://c2.com/cgi/wiki?ChoosingaWiki
http://c2.com/cgi/wiki?ChoosingaWiki

91The main CI-related content types
Users create and edit pages, categories, and the relationship between the pages and the
categories.

 The category page is an example of the CompositeContentType that we introduce
in section 4.4 for extracting intelligence.

 Figure 4.5 shows a persistence model for a wiki. Also, a blob is used for the text of a
page, allowing the users to create a large document.

We’ve briefly reviewed wikis: what they are, how they’re used, the elements of a wiki,
and how they can be persisted. Lastly, let’s look at the third content type associated
with collective intelligence: groups and message boards.

4.2.3 Groups and message boards

Message boards are places where you can ask questions and others can respond to
them, as well as rate them for usefulness. Message boards are usually associated with
groups. A group is a collection of users that share a common interest, where users can
participate in threaded conversations. Groups usually have a mailing list associated with
them where members can get updates over email. Yahoo! has more than a million

Figure 4.5 Persistence model for a wiki

92 CHAPTER 4 Extracting intelligence from content
groups on virtually every subject, from data mining, to groups on companies, dogs, and
marathons. There are hundreds of message boards, and you can find a list of them at
http://www.topology.org/net/mb.html and http://dmoz.org/Computers/Internet/
On_the_Web/Message_Boards/.
USE OF MESSAGE BOARDS

Groups can be useful in your application for bringing together people with similar inter-
ests and tastes. In a blog, people respond to writing by a single user or a group of blog-
gers, who collectively share the responsibility of writing blog entries; this is especially
true in the case of corporate blogs. However, in a group or a message board, any user
can pose a question to which others can respond. Message boards along with wikis are
more collaborative. Since multiple people can post and comment on questions, message
boards need to be moderated and managed to weed out spam and flames. Each entry
in a message board should be indexed separately by a search engine.
MODELING GROUPS AND MESSAGE BOARDS

As shown in table 4.4, groups, topics, questions, messages, and users are the main enti-
ties for groups and message boards.

As shown in figure 4.6, each group consists of a number of topics; each topic has a
number of questions; each question has a number of messages or answers. A user can
belong to multiple groups; can create a group, topic, question, or answer; and can
rate any of these entities. Again, groups, topics, and question are all examples of Com-
positeContentTypes, which we discuss in section 4.3. Figure 4.7 shows the schema for
the elements of a message board.

 In this section, we’ve looked at three content types that are typically associated with
collective intelligence: blogs, wikis, and groups and message boards. We’ve looked at
the elements of these content types, how they’re used, and the relationship between

Table 4.4 Entities for message boards and groups

Entity Description

Groups Collections of users that have a common cause or interest

Topics Groups consist of a number of topics or categories

Questions Users pose questions within a topic

Messages Posted in response to a question or an answer provided

User Can create, become a member of, view, or rate any of the above entities

Group Topics Question Messages

User

0,..* 0,..* 0,..*1 1 1

creates,
Is member of,
views, rates Figure 4.6 Modeling a message board or a group

http://www.topology.org/net/mb.html
http://dmoz.org/Computers/Internet/On_the_Web/Message_Boards/
http://dmoz.org/Computers/Internet/On_the_Web/Message_Boards/

93Extracting intelligence step by step
their various elements. Now we’re ready to take a more detailed look at how intelli-
gence is extracted from analyzing content.

4.3 Extracting intelligence step by step
In section 2.2.3, we introduced the use of term vectors to represent metadata associated
with text. We also introduced the use of term frequency and inverse document fre-
quency to compute the weight associated with each term. This approach is an example
of using the content to generate the metadata. In section 3.3, we demonstrated a col-
laborative approach using user tagging to generate similar metadata with text.

 At this stage, it’s helpful to go through an example of how the term vector can be
computed by analyzing text. The intent of this section is to demonstrate concepts and
keep things simple; therefore we develop simple classes for this example. Later, in chap-
ter 8, we use open source libraries for analyzing text, but going through the code devel-
oped in this chapter should give you good insight into the fundamentals involved.

 If you haven’t done so already, it’s worthwhile to review section 2.2.3, which gives
an overview of generating metadata (term vectors) from text, and section 3.2.1 on tag
clouds, which we use to visualize the data.

msg_message_id int unsigned(10)
user_id int unsigned(10)
text varchar(2000)

msg_board_message

msg_question_id=msg_question_id

user_id=user_id

msg_question_id
reply_to_post_id
create_date

int unsigned(10)
int unsigned(10)

timestamp(19)

msg_question_id int unsigned(10)
user_id int unsigned(10)
text varchar(2000)

msg_board_question

msg_topic_id
create_date

int unsigned(10)
timestamp(19)

msg_topic_id int unsigned(10)
name varchar(200)

msg_board_topic

owner_user_id
description

create_date

varchar(2000)
int unsigned(10)

timestamp(19)
msg_group_id int unsigned(10)

user_id int unsigned(10)
name varchar(50)

user

msg_group_id int unsigned(10)
name varchar(200)

msg_board_group

owner_user_id
description
create_date

varchar(2000)
int unsigned(10)

timestamp(19)

msg_topic_id=msg_topic_id

user_id=user_id

user_id=owner_user_id

msg_group_id=msg_group_id user_id=owner_user_id

Figure 4.7 The
schema for the
elements of a
message board

94 CHAPTER 4 Extracting intelligence from content
 Remember, the typical steps involved in text analysis are shown in figure 4.8:

1 Tokenization —Parse the text to generate terms. Sophisticated analyzers can also
extract phrases from the text.

2 Normalize — Convert them to lowercase.
3 Eliminate stop words — Eliminate terms that appear very often.
4 Stemming — Convert the terms into their stemmed form—remove plurals.

In this section, we set up the example that we’ll use. We first use a simple but naïve way
to analyze the text—simply tokenizing the text, analyzing the body and title, and tak-
ing term frequency into account. Next, we show the results of the analysis by eliminat-
ing the stop words, followed by the effect of stemming. Lastly, we show the effect of
detecting phrases on the analysis.

4.3.1 Setting up the example

Let’s assume that a reader has posted the following blog entry:

Title: Collective Intelligence and Web2.0
Body: Web2.0 is all about connecting users to users, inviting users to participate, and
applying their collective intelligence to improve the application. Collective intelligence
enhances the user experience.

There are a few interesting things to note about the blog entry:

■ It discusses collective intelligence, Web 2.0, and how they affect users.
■ There are a number of occurrences of user and users.
■ The title provides valuable information about the content.

We’ve talked about metadata and term vectors; code for this is fully developed in chap-
ter 8. So as not to confuse things for this example, simply think of metadata being rep-
resented by an implementation of the interface MetaDataVector, as shown in listing 4.1.

package com.alag.ci;

import java.util.List;

public interface MetaDataVector {
 public List<TagMagnitude> getTagMetaDataMagnitude() ;
 public MetaDataVector add(MetaDataVector other);
}

We have two methods: one for getting the terms and their weights and the second to
add another MetaDataVector. Further, assume that we have a way to visualize this
MetaDataVector; after all, it consists of tags or terms and their relative weights.2

Listing 4.1 The MetaDataVector interface

2 If you really want to see the code for the implementation of the MetaDataVector, jump ahead to chap-
ter 8 or download the available code.

Tokeniza�on Normalize
Eliminate

Stop Words
Stemming Figure 4.8 Typical steps

involved in analyzing text

Gets sorted list of
terms and weights

Gives result
from adding
another
MetaDataVector

95Extracting intelligence step by step
 Let’s define an interface MetaDataExtractor for the algorithm that will extract meta-
data, in the form of keywords or tags, by analyzing the text. This is shown in listing 4.2.

package com.alag.ci.textanalysis;

import com.alag.ci.MetaDataVector;

public interface MetaDataExtractor {
 public MetaDataVector extractMetaData(String title, String body);
}

The interface has only one method,
extractMetaData, which analyzes
the title and body to generate a
MetaDataVector. The MetaData-

Vector in essence is the term vector
for the text being analyzed.

 Figure 4.9 shows the hierarchy of
increasingly complex text analyzers
that we use in the next few sections.
First, we use a simple analyzer to cre-
ate tokens from the text. Next, we
remove the common words. This is
followed by taking care of plurals.
Lastly, we detect multi-term phrases.
With this background, we’re now
ready to have some fun and work
through some code to analyze our
blog entry!

4.3.2 Naïve analysis

Let’s begin by tokenizing the text,
normalizing it, and getting the fre-
quency count associated with each
term. We also analyze the body and
text separately and then combine
the information from each. For this
we use SimpleMetaDataExtractor,
which is a naïve implementation for
our analyzer, shown in listing 4.3.

package com.alag.ci.textanalysis.impl;

import java.util.*;
import com.alag.ci.*;

Listing 4.2 The MetaDataExtractor interface

Listing 4.3 Implementation of the SimpleMetaDataExtractor

Figure 4.9 The hierarchy of analyzers used to create
metadata from text

96 CHAPTER 4 Extracting intelligence from content
import com.alag.ci.impl.*;
import com.alag.ci.textanalysis.MetaDataExtractor;

public class SimpleMetaDataExtractor implements MetaDataExtractor {
 private Map<String, Long> idMap = null;
 private Long currentId = null;

 public SimpleMetaDataExtractor() {
 this.idMap = new HashMap<String,Long>();
 this.currentId = new Long(0);
 }

 public MetaDataVector extractMetaData(String title, String body) {
 MetaDataVector titleMDV = getMetaDataVector(title);
 MetaDataVector bodyMDV = getMetaDataVector(body);
 return titleMDV.add(bodyMDV);
 }

 private Long getTokenId(String token) {
 Long id = this.idMap.get(token);
 if (id == null) {
 id = this.currentId ++;
 this.idMap.put(token, id);
 }
 return id;
 }

Since the title provides valuable information as a heuristic, let’s say that the resulting
MetaDataVector is a combination of the MetaDataVectors for the title and the body.
Note that as tokens or tags are extracted from the text, we need to provide them with
a unique ID; the method getTokenId takes care of it for this example. In your applica-
tion, you’ll probably get it from the tags table.

 The following code extracts metadata for the article:

 MetaDataVector titleMDV = getMetaDataVector(title);
 MetaDataVector bodyMDV = getMetaDataVector(body);
 return titleMDV.add(bodyMDV);

Here, we create MetaDataVectors for the title and the body and then simply combine
them together.

 As new tokens are extracted, a unique ID is assigned to them by the code:

 private Long getTokenId(String token) {
 Long id = this.idMap.get(token);
 if (id == null) {
 id = this.currentId ++;
 this.idMap.put(token, id);
 }
 return id;
 }

The remaining piece of code, shown in listing 4.4, is a lot more interesting.

 private MetaDataVector getMetaDataVector(String text) {
 Map<String,Integer> keywordMap = new HashMap<String,Integer>();

Listing 4.4 Continuing with the implementation of SimpleMetaDataExtractor

Used to
generate
unique
IDs

Keeps
map of
all tags
found

Places equal
weight on title
and body

Generates
unique IDs for
tags found

97Extracting intelligence step by step
 StringTokenizer st = new StringTokenizer(text);
 while (st.hasMoreTokens()) {
 String token = normalizeToken(st.nextToken());
 if (acceptToken(token)) {
 Integer count = keywordMap.get(token);
 if (count == null) {
 count = new Integer(0);
 }
 count ++;
 keywordMap.put(token, count);
 }
 }
 MetaDataVector mdv = createMetaDataVector(keywordMap);
 return mdv;
 }

 protected boolean acceptToken(String token) {
 return true;
 }

 protected String normalizeToken(String token) {
 String normalizedToken = token.toLowerCase().trim();
 if ((normalizedToken.endsWith(".")) ||
 (normalizedToken.endsWith(","))) {
 int size = normalizedToken.length();
 normalizedToken = normalizedToken.substring(0, size -1);
 }
 return normalizedToken;
 }
}

Here, we use a simple StringTokenizer to break the words into their individual form:

 StringTokenizer st = new StringTokenizer(text);
 while (st.hasMoreTokens()) {

We want to normalize the tokens so that they’re case insensitive—that is, so user and
User are the same word—and also remove the punctuation (comma and period).

String token = normalizeToken(st.nextToken());

The normalizeToken simply lowercases the tokens and removes the punctuation:

protected String normalizeToken(String token) {
 String normalizedToken = token.toLowerCase().trim();
 if ((normalizedToken.endsWith(".")) ||
 (normalizedToken.endsWith(","))) {
 int size = normalizedToken.length();
 normalizedToken = normalizedToken.substring(0, size -1);
 }
 return normalizedToken;

}

We may not want to accept all the tokens, so we have a method acceptToken to decide
whether a token is to be expected:

 if (acceptToken(token)) {

All tokens are accepted in this implementation.

Uses space
delimited
StringTokenizer

Should we accept
token as valid?

Keeps
frequency count

Creates
MetaDataVector

Method to decide if
token is accepted

Convert to
lowercase/
remove
punctuation

98 CHAPTER 4 Extracting intelligence from content
 The logic behind the method is simple: find the tokens, normalize them, see if
they’re to be accepted, and then keep a count of how many times they occur. Both
title and body are equally weighted to create a resulting MetaDataVector. With this,
we’ve met our goal of creating a set of terms and their relative weights to represent the
metadata associated with the content.

 A tag cloud is a useful way to visualize the output
from the algorithm. First, let’s look at the title, as
shown in figure 4.10. The algorithm tokenizes the
title and extracts four equally weighted terms: and, col-
lective, intelligence, and web2.0. Note that and appears as
one of the four terms and collective and intelligence are
two separate terms.

 Similarly, the tag cloud for the body of the text is shown in figure 4.11. Note that
words such as the and to occur frequently, and user and users are treated as separate
terms. There are a total of 20 terms in the body.

Combining the vectors for both the title and the body, we get the resulting MetaData-
Vector, whose tag cloud is shown in figure 4.12.

The three terms collective, intelligence, and web2.0 stand out. But there are quite a few noise
words such as all, and, is, the, and to that occur so frequently in the English language that
they don’t add much value. Let’s next enhance our implementation by eliminating
these terms.

4.3.3 Removing common words

Commonly occurring terms are also called stop terms (see section 2.2) and can be spe-
cific to the language and domain. We implement SimpleStopWordMetaDataExtractor
to remove these stop words. The code for this is shown in listing 4.5.

package com.alag.ci.textanalysis.impl;

import java.util.*;

public class SimpleStopWordMetaDataExtractor
 extends SimpleMetaDataExtractor {
 private static final String[] stopWords =

Listing 4.5 Implementation of SimpleStopWordMetaDataExtractor

Figure 4.11 The tag
cloud for the body of
the text

Figure 4.12
The resulting tag
cloud obtained by
combining the
title and the body

Figure 4.10 The tag cloud for the
title consists of four terms.

99Extracting intelligence step by step
 {"and","of","the","to","is","their","can","all", ""};
 private Map<String,String> stopWordsMap = null;

 public SimpleStopWordMetaDataExtractor() {
 this.stopWordsMap = new HashMap<String,String>();
 for (String s: stopWords) {
 this.stopWordsMap.put(s, s);
 }
 }

 protected boolean acceptToken(String token) {
 return !this.stopWordsMap.containsKey(token);
 }
}

This class has a dictionary of terms that are to be ignored. In our case, this is a simple
list; for your application this list will be a lot longer.

 private static final String[] stopWords =
 {"and","of","the","to","is","their","can","all", ""};

The acceptToken method is overwritten to not accept any tokens that are in the stop
word list:

 protected boolean acceptToken(String token) {
 return !this.stopWordsMap.containsKey(token);
 }

Figure 4.13 shows the tag cloud after removing the stop words. We now have 14 terms
from the original 20. The terms collective, intelligence, and web2.0 stand out. But user and
users are still fragmented and are treated as separate terms.

To combine user and users as one term, we need to stem the words.

4.3.4 Stemming

Stemming is the process of converting words to their stemmed form. There are fairly
complex algorithms for doing this, Porter stemming being the most commonly used.

 There’s only one plural in our example: users. For now, we enhance our implemen-
tation with SimpleStopWordStemmerMetaDataExtractor, whose code is in listing 4.6.

package com.alag.ci.textanalysis.impl;

public class SimpleStopWordStemmerMetaDataExtractor extends
 SimpleStopWordMetaDataExtractor {

 protected String normalizeToken(String token) {
 if (acceptToken(token)) {
 token = super.normalizeToken(token);

Listing 4.6 Implementation of SimpleStopWordStemmerMetaDataExtractor

Dictionary
of stop
words

Don’t accept
token if stop word

Figure 4.13
The tag cloud after
removing the stop
words

If rejected,
don’t normalize

100 CHAPTER 4 Extracting intelligence from content
 if (token.endsWith("s")) {
 int index = token.lastIndexOf("s");
 if (index > 0) {
 token = token.substring(0, index);
 }
 }
 }
 return token;
 }
}

Here, we overwrite the normalizeToken method. First, it checks to make sure that the
token isn’t a stop word:

 protected String normalizeToken(String token) {
 if (acceptToken(token)){
 token = super.normalizeToken(token);

Then it simply removes “s” from the end of terms.
 Figure 4.14 shows the tag cloud obtained by stemming the terms. The algorithm

transforms user and users into one term: user.

We now have four terms to describe the blog entry: collective, intelligence, user, and
web2.0. But collective intelligence is really one phrase, so let’s enhance our implementa-
tion to detect this term.

4.3.5 Detecting phrases

Collective intelligence is the only two-term phrase that we’re interested in. For this, we
will implement SimpleBiTermStopWordStemmerMetaDataExtractor, the code for
which is shown in listing 4.7.

package com.alag.ci.textanalysis.impl;

import java.util.*;

import com.alag.ci.MetaDataVector;

public class SimpleBiTermStopWordStemmerMetaDataExtractor extends
 SimpleStopWordStemmerMetaDataExtractor {

 protected MetaDataVector getMetaDataVector(String text) {
 Map<String,Integer> keywordMap = new HashMap<String,Integer>();
 List<String> allTokens = new ArrayList<String>();
 StringTokenizer st = new StringTokenizer(text);
 while (st.hasMoreTokens()) {
 String token = normalizeToken(st.nextToken());
 if (acceptToken(token)) {
 Integer count = keywordMap.get(token);

Listing 4.7 Implement SimpleBiTermStopWordStemmerMetaDataExtractor

Normalize
strings

Figure 4.14
The tag cloud
after normalizing
the terms

101Extracting intelligence step by step
 if (count == null) {
 count = new Integer(0);
 }
 count ++;
 keywordMap.put(token, count);
 allTokens.add(token);
 }
 }
 String firstToken = allTokens.get(0);
 for (String token: allTokens.subList(1, allTokens.size())) {
 String biTerm = firstToken + " " + token;
 if (isValidBiTermToken(biTerm)) {
 Integer count = keywordMap.get(biTerm);
 if (count == null) {
 count = new Integer(0);
 }
 count ++;
 keywordMap.put(biTerm, count);
 }
 firstToken = token;
 }
 MetaDataVector mdv = createMetaDataVector(keywordMap);
 return mdv;
 }

 private boolean isValidBiTermToken(String biTerm) {
 if ("collective intelligence".compareTo(biTerm) == 0) {
 return true;
 }
 return false;
 }
}

Here, we overwrite the getMetaDataVector method. We create a list of valid tokens
and store them in a list, allTokens.

 Next, the following code combines two tokens to check whether they’re valid:

 String firstToken = allTokens.get(0);
 for (String token: allTokens.subList(1, allTokens.size())) {
 String biTerm = firstToken + " " + token;
 if (isValidBiTermToken(biTerm)) {

In our case, there’s only one valid phrase, collective intelligence, and the check is done in
the method.

 private boolean isValidBiTermToken(String biTerm) {
 if ("collective intelligence".compareTo(biTerm) == 0) {
 return true;
 }
 return false;
 }

Figure 4.15 shows the tag cloud for
the title of the blog after using our
new analyzer. As desired, there are
four terms: collective, collective intel-
ligence, intelligence, and web2.0.

Store normalized
tokens in order

Take two tokens
and check validity

Phrases tested
against phrase
dictionary

Figure 4.15 Tag cloud for the title after using the bi-term
analyzer

102 CHAPTER 4 Extracting intelligence from content
 The combined tag cloud for the blog now contains 14 terms, as shown in fig-
ure 4.16. There are five tags that stand out: collective, collective intelligence, intelligence,
user, and web2.0.

Using phrases in the term vector can improve finding other similar content. For
example, if we had another article, “Intelligence in a Child,” with tokens intelligence
and child, there’d be a match on the term intelligence. But if our analyzer was intelli-
gent enough to simply extract collective intelligence without the terms collective and intelli-
gence, there would be no match between the two pieces of content.

 Hopefully, this gives you a good overview of how text can be analyzed automatically
to extract relevant keywords or tags and build a MetaDataVector.

 Now, every item in your application has an associated MetaDataVector. As users
interact on your site, you can use the MetaDataVector associated with the items to
develop a profile for the user. Finding similar items deals with finding items that have
similar MetaDataVectors.

 Intelligence in your application will manifest itself in three main forms—predictive
models, search, and recommendation engines—each of which is covered in the latter
half of this book.

 In this section, we’ve worked with a simple example to understand how intelli-
gence can be extracted from text. Text processing involves a number of steps, includ-
ing creating tokens from the text, normalizing the text, removing common words that
aren’t helpful, stemming the words to their roots, injecting synonyms, and detecting
phrases. With this basic understanding of text processing, we can now tie this back to
section 4.1, where we discussed the different content types. For text processing, we
can classify content into two types: simple and composite.

4.4 Simple and composite content types
In your application, you may want to show related videos for an article, or related
blog entries for a product. Classifying the content into content types as done in sec-
tion 4.4.1 enables you to do this analysis. Basically, you should consider only desired
content types as candidate items. The content types we’ve developed are mutually
exclusive; an item can only belong to one content type. Therefore, we enhance
the Item table introduced in section 2.3.1 to also contain the content type. There’s
also another table, content_type, that contains a list of content types, as shown in
figure 4.17.

Figure 4.16 Tag cloud for the blog after using a bi-term analyzer

103Summary
Based on how the term vectors for the content types are extracted, we can define content
types—SimpleContentType and CompositeContentType—shown in figure 4.18.

Both the simple and the composite content types are described in table 4.5.

Note that for certain content types such as questions and answers, answers are fully
contained within the context of the question. You typically won’t show the answer
without the context of the question. The same is true for a list of items that a user may
have saved together. The term vectors for CompositeContentType are obtained by
combining the term vectors for each of their children items. The MetaDataVector for
a CompositeContentType is obtained by combining the MetaDataVector for each of
its children items.

4.5 Summary
Content is the foundation for building applications. It’s one of the main reasons why
users come to your application. There are a number of different types of content,

Table 4.5 Content type categorization

Content Type Description Examples

Simple content
type

Items of this content type aren’t
dependent on other items .

Articles, photos, video, blogs, polls, products

Composite
content type

Items of this content type are
dependent on other items.

Questions with their associated set of answers
Categorized terms with an associated set of
items to describe the term
Boards with associated group of messages
Categories of items

int unsigned(10)

name varchar(50)

item_type

item_type_id

description varchar(200)

item_id int unsigned(10)

item_type_id

item

name varchar(50)
int unsigned(10)

item_type_id=item_type_id

Figure 4.17 Adding item_type to the item table

<<Interface>>

contentType

I

SimpleContentTypeC CompositeContentTypeC

<<realize>><<realize>>

Figure 4.18 Classifying content types

104 CHAPTER 4 Extracting intelligence from content
such as articles, photos, video, blogs, wikis, classification terms, polls, lists, and so
forth. These can be created professionally, created by users, or aggregated from exter-
nal sites. Depending on your business requirements, there are three main ways of inte-
grating content into your application: on a separate server hosted within your firewall,
embedded in your application, and linked to an external site.

 Intelligence or metadata can be extracted by analyzing text. The process consists
of creating tokens, normalizing the tokens, validating them, stemming them, and
detecting phrases. This metadata is in addition to the collaborative approach for gen-
erating metadata for content that we looked at in chapter 3.

 Blogs, wikis, and groups are some ways by which users interact, both within and
outside your application. Each tool is potentially useful within your application.
User-generated content in your application can boost your search engine ranking,
influence users, make your application stickier, and increase the content available in
your application.

 Content can be classified into simple and composite content types based on how
metadata is extracted.

 In the last three chapters, we looked at gathering intelligence from information
within your application. The next two chapters deal with collecting information from
outside your application. Chapter 5 deals with searching the blogosphere for relevant
content, while chapter 6 introduces how to crawl the web in search of relevant con-
tent. Both techniques can be helpful in aggregating external relevant information for
your application.

4.6 Resources
 “All Things Web 2.0: Message Boards.” http://www.allthingsweb2.com/component/

option,com_mtree/task,search/Itemid,26/searchword,message%20boards/cat_id,0/
 “Axamol Message Board.” http://www.slamb.org/projects/axamol/message-board/
 “Blog Software Breakdown.” http://asymptomatic.net/blogbreakdown.htm
 “Blog software comparison chart.” Online Journalism Review. http://www.ojr.org/ojr/images/

blog_software_comparison.cfm
 “Blogging Strategy 101: A Primer.” http://www.scoutblogging.com/blogs101.html
 “Blogs Will Change Your Business.” May 2, 2005. BusinessWeek. http://www.businessweek.com/

magazine/content/05_18/b3931001_mz001.htm
 “Blogware choice.” http://asymptomatic.net/2004/05/28/2040/blogware-choice
 “Building Online Communities, Chromatic.” O’Reilly. October 2002. http://www.oreilly-

net.com/pub/a/network/2002/10/21/community.html
 “Choosing a Wiki”, http://c2.com/cgi/wiki?ChoosingaWiki
 “Comparison of Wiki Software.” http://en.wikipedia.org/wiki/Comparison_of_wiki_software
 “Corporate Blogging: Is it worth the hype?” Backbone Media, 2005. http://

www.backbonemedia.com/blogsurvey/blogsurvey2005.pdf
 Edelman, Richard. “A Commitment.” October 16, 2006. http://www.edelman.com/speak_up/

blog/archives/2006/10/a_commitment.html#trackbacks
 Fish, Shlomi. “July 2006 Update to Which Wiki.” http://www.shlomifish.org/philosophy/

computers/web/which-wiki/update-2006-07/

http://www.allthingsweb2.com/component/option,com_mtree/task,search/Itemid,26/searchword,message%20boards/cat_id,0/
http://www.allthingsweb2.com/component/option,com_mtree/task,search/Itemid,26/searchword,message%20boards/cat_id,0/
http://www.slamb.org/projects/axamol/message-board/
http://asymptomatic.net/blogbreakdown.htm
http://www.ojr.org/ojr/images/blog_software_comparison.cfm
http://www.ojr.org/ojr/images/blog_software_comparison.cfm
http://www.scoutblogging.com/blogs101.html
http://www.businessweek.com/magazine/content/05_18/b3931001_mz001.htm
http://www.businessweek.com/magazine/content/05_18/b3931001_mz001.htm
http://asymptomatic.net/2004/05/28/2040/blogware-choice
http://www.oreillynet.com/pub/a/network/2002/10/21/community.html
http://www.oreillynet.com/pub/a/network/2002/10/21/community.html
http://c2.com/cgi/wiki?ChoosingaWiki
http://en.wikipedia.org/wiki/Comparison_of_wiki_software
http:// www.backbonemedia.com/blogsurvey/blogsurvey2005.pdf
http:// www.backbonemedia.com/blogsurvey/blogsurvey2005.pdf
http://www.edelman.com/speak_up/blog/archives/2006/10/a_commitment.html#trackbacks
http://www.edelman.com/speak_up/blog/archives/2006/10/a_commitment.html#trackbacks
http://www.shlomifish.org/philosophy/computers/web/which-wiki/update-2006-07/
http://www.shlomifish.org/philosophy/computers/web/which-wiki/update-2006-07/

105Resources
 ———“Which Open Source Wiki Works For You?” November, 2004. http://www.onlamp.com/
pub/a/onlamp/2004/11/04/which_wiki.html

 ———“Fortune 500 Business Blogging Wiki.” http://www.socialtext.net/bizblogs/index.cgi
 Friedman, Tom. The World is Flat. 2005. Penguin Books.
 Gardner, Susannah. “Time to check: Are you using the right blogging tool?” Online Journalism

Review. July 14, 2005. http://www.ojr.org/ojr/stories/050714gardner/
 Goodnoe, Ezra. “How To Use Wikis For Business.” InformationWeek, August 8, 2005. http://

informationweek.com/shared/printableArticle.jhtml?articleID=167600331
 Green, Heather. “Meebo and its Language Wiki.” BusinessWeek. July 11, 2006. http://

www.businessweek.com/the_thread/blogspotting/archives/2006/07/
meebo_and_its_m.html?chan=search

 Hof, Rob. “JotSpot Intros Wiki 2.0.” BusinessWeek. July 24, 2006. http://www.businessweek.com/
the_thread/techbeat/archives/2006/07/jotspot_intros.html?chan=search

 Holohan, Catherine. “Six Apart’s Booming Blogosphere.” September 25, 2006. BusinessWeek.
http://www.businessweek.com/technology/content/sep2006/
tc20060925_607937.htm?chan=search

 Horrigan, John, and Lee Rainie. “The Internet’s Growing Role in Life’s Major Moments.”
http://www.pewinternet.org/pdfs/PIP_Major%20Moments_2006.pdf

 “Internet Message Boards.” http://www.topology.org/net/mb.html
 Kirkby, Jennifer. “Welcome to the Blogosphere.” The Customer Management Community.

http://www.insightexec.com/newswire_archive/20060322_monthly.html
 Lee, Felicia. “Survey of the Blogosphere Finds 12 Million Voices.” New York Times. July 20, 2006.

http://select.nytimes.com/search/restricted/
article?res=FA0613F63D5B0C738EDDAE0894DE404482

 Li, Charlene. “Blogging policy examples.” November 8, 2004. http://forrester.typepad.com/
charleneli/2004/11/blogging_policy.html

 Lenhrt, Amanda, and Susannah Fox. “Bloggers: A portrait of the internet’s new storytellers.”
July 19, 2006. Pew Internet & American Life Project. http://www.pewinternet.org/PPF/r/
186/report_display.asp

 Leuf, Bo, and Ward Cunningham. “The Wiki Way: Collaboration and Sharing on the Internet.”
2001. Addison Wessley.

 “Message Boards.” http://dmoz.org/Computers/Internet/On_the_Web/Message_Boards/
 “Online Community Toolkit.” http://www.fullcirc.com/community/communitymanual.htm
 Open Directory, Message Boards. http://dmoz.org/Computers/Internet/On_the_Web/

Message_Boards/
 “Open Source Bloggers in Java.” http://java-source.net/open-source/bloggers
 Pilgrim, Mark. “What is RSS?” XML.com. 2002. http://www.xml.com/pub/a/2002/12/18/

dive-into-xml.html
 Quick, William. “Blogosphere.” http://www.iw3p.com/DailyPundit/

2001_12_30_dailypundit_archive.php#8315120
 “Reports Family, Friends, and Community.” http://www.pewinternet.org/

report_display.asp?r=47
 “Roller open source blog server.” http://rollerweblogger.org/
 Scoble, Robert, and Shell Israel. “Naked Conversations: How Blogs Are Changing the Way Busi-

nesses Talk with Customers.” Wiley. 2006.
 Sifry, Dave. “State of the Blogosphere, August 2005, Part 1: Blog Growth.” August 2, 2005. http:

//www.technorati.com/weblog/2005/08/34.html
 Singer, Suzette Cavanaugh. “NeoMarketing.” June, 2006. Class notes, UC SC Extension.

http://www.onlamp.com/pub/a/onlamp/2004/11/04/which_wiki.html
http://www.onlamp.com/pub/a/onlamp/2004/11/04/which_wiki.html
http://www.socialtext.net/bizblogs/index.cgi
http://www.ojr.org/ojr/stories/050714gardner/
http://informationweek.com/shared/printableArticle.jhtml?articleID=167600331
http://informationweek.com/shared/printableArticle.jhtml?articleID=167600331
http://www.businessweek.com/the_thread/blogspotting/archives/2006/07/meebo_and_its_m.html?chan=search
http://www.businessweek.com/the_thread/blogspotting/archives/2006/07/meebo_and_its_m.html?chan=search
http://www.businessweek.com/the_thread/blogspotting/archives/2006/07/meebo_and_its_m.html?chan=search
http://www.businessweek.com/the_thread/techbeat/archives/2006/07/jotspot_intros.html?chan=search
http://www.businessweek.com/the_thread/techbeat/archives/2006/07/jotspot_intros.html?chan=search
http://www.businessweek.com/technology/content/sep2006/tc20060925_607937.htm?chan=search
http://www.businessweek.com/technology/content/sep2006/tc20060925_607937.htm?chan=search
http://www.pewinternet.org/pdfs/PIP_Major%20Moments_2006.pdf
http://www.topology.org/net/mb.html
http://www.insightexec.com/newswire_archive/20060322_monthly.html
http://select.nytimes.com/search/restricted/article?res=FA0613F63D5B0C738EDDAE0894DE404482
http://select.nytimes.com/search/restricted/article?res=FA0613F63D5B0C738EDDAE0894DE404482
http://forrester.typepad.com/charleneli/2004/11/blogging_policy.html
http://forrester.typepad.com/charleneli/2004/11/blogging_policy.html
http://www.pewinternet.org/PPF/r/186/report_display.asp
http://www.pewinternet.org/PPF/r/186/report_display.asp
http://dmoz.org/Computers/Internet/On_the_Web/Message_Boards/
http://www.fullcirc.com/community/communitymanual.htm
http://dmoz.org/Computers/Internet/On_the_Web/Message_Boards/
http://dmoz.org/Computers/Internet/On_the_Web/Message_Boards/
http://java-source.net/open-source/bloggers
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html
http://www.iw3p.com/DailyPundit/2001_12_30_dailypundit_archive.php#8315120
http://www.iw3p.com/DailyPundit/2001_12_30_dailypundit_archive.php#8315120
http://www.pewinternet.org/report_display.asp?r=47
http://www.pewinternet.org/report_display.asp?r=47
http://rollerweblogger.org/
http://www.technorati.com/weblog/2005/08/34.html
http://www.technorati.com/weblog/2005/08/34.html

106 CHAPTER 4 Extracting intelligence from content
 “State of the Blogosphere, April 2006, Part 1: Blog Growth.” August 2, 2006. http://
technorati.com/weblog/2006/04/96.html

 “State of the Blogosphere, August 2005, Part 2: Posting Volume.” August 2, 2005. http://
technorati.com/weblog/2005/08/35.html

 “The Best of Web2.0 Wiki.” http://www.allthingsweb2.com/component/option,com_mtree/
task,listcats/cat_id,120/Itemid,26/

 “Top ten Wiki Engines.” http://c2.com/cgi-bin/wiki?TopTenWikiEngines
 “Twiki.” http://www.twiki.org/
 Udell, John. “Year of the enterprise Wiki.” InfoWorld. December 2004. http://

www.infoworld.com/article/04/12/30/01FEtoycollab_1.html
 “Virtual Community, Wikipedia.” http://en.wikipedia.org/wiki/Virtual_community
 “What is Wiki?” Wiki.org. http://wiki.org/wiki.cgi?WhatIsWiki
 “Wiki Engines.” http://c2.com/cgi/wiki?WikiEngines
 Wolley, David. “Forum Software for the Web: An independent guide to discussion forum & mes-

sage board software.” http://thinkofit.com/webconf/forumsoft.htm
 “10 Tips for Becoming a Great Corporate Blogger.” Backbone Media. http://

www.scoutblogging.com/tips.html

http://technorati.com/weblog/2006/04/96.html
http://technorati.com/weblog/2006/04/96.html
http://technorati.com/weblog/2005/08/35.html
http://technorati.com/weblog/2005/08/35.html
http://www.allthingsweb2.com/component/option,com_mtree/task,listcats/cat_id,120/Itemid,26/
http://www.allthingsweb2.com/component/option,com_mtree/task,listcats/cat_id,120/Itemid,26/
http://c2.com/cgi-bin/wiki?TopTenWikiEngines
http://www.twiki.org/
http://www.infoworld.com/article/04/12/30/01FEtoycollab_1.html
http://www.infoworld.com/article/04/12/30/01FEtoycollab_1.html
http://en.wikipedia.org/wiki/Virtual_community
http://wiki.org/wiki.cgi?WhatIsWiki
http://c2.com/cgi/wiki?WikiEngines
http://thinkofit.com/webconf/forumsoft.htm
http://www.scoutblogging.com/tips.html
http://www.scoutblogging.com/tips.html

Searching the blogosphere
In early 2007, Microsoft was slated to launch its much-awaited new operating sys-
tem—Vista. Perhaps tacitly acknowledging the growing power of the blogo-
sphere—the collection of blogs on the web—and the impact it has in shaping the
thoughts of others, a Microsoft employee contacted about 90 influential bloggers
in late December 2006, offering them each a laptop, probably worth about $2,000,
preloaded with Vista, and encouraging them to blog about their experiences with
the new operating system. Leaving aside issues related to ethics and conflict of
interest, public relations firms are now reaching out to bloggers, podcasters, and
people who post video clips on the Internet to promote their products.

 What people say about your product or application has an impact on others and
affects your brand—it’s important to track what others are saying about your prod-
uct or application. In this chapter, we look at how we can search the blogosphere to
discover nuggets of relevant information. The infrastructure developed here to

This chapter covers
■ A brief introduction to the blogosphere
■ A framework for searching the blogosphere
■ Integrating Technorati and Bloglines
■ Integrating MSN and Blogdigger using RSS
107

108 CHAPTER 5 Searching the blogosphere
retrieve blog entries is leveraged in the remaining part of the book to build examples
to illustrate various algorithms.

 In the previous three chapters, we looked at how to gather information from
within your application. Collective intelligence deals with using information both
within and outside one’s application. In this and the next chapter, we focus on gather-
ing relevant information from outside your application.

 In section 4.2.1, we briefly looked at the elements of a blog. Searching for relevant
information within blogs in your application is straightforward—index all content
with a search engine and derive metadata from it. But harvesting information from
the millions of blog entries not within your application is more involved. There are a
large number of companies,1 blog-tracking providers, that are in the business of track-
ing blogs. These companies provide APIs to query for relevant blog entries, usually
using RSS (introduced in section 5.1.2) and/or proprietary APIs.

 This chapter shows how to search blog-tracking providers. We leverage this infra-
structure again in chapter 9 to illustrate the clustering process, in chapter 10 to illus-
trate predictive models, in chapter 11 to illustrate a search engine, and in chapter 12
to illustrate building a recommendation engine.

 In this chapter, we build a generalized framework so you can start using blog-track-
ing providers to search blogs. We begin with a brief introduction to the blogosphere,
RSS, and blog-tracking providers. Next, we build a generalized framework for search-
ing blogs. This is followed by building the base implementation, which takes care of
most of the heavy lifting.

 There are a number of blog-tracking providers. Fortunately, most of them provide
an RSS API in addition to any proprietary APIs to search for blogs they’re tracking. We
show how to integrate blog-tracking providers into the framework by integrating Tech-
norati and Bloglines using their proprietary APIs, followed by integrating other pro-
viders, MSN and Blogdigger, using RSS 2.0. Other formats and providers can be
integrated in a similar manner.

5.1 Introducing the blogosphere
People blog on virtually every topic, and there are literally millions of blogs in the blo-
gosphere.2 Further, people may blog within your application. All these blog entries con-
tain a rich set of information, which when relevant could be valuable to users. The
universe of blogs in essence is a good example of collective intelligence in action; here,
the collective contributions of millions of people shape the thoughts of others.

 In this section, we look at some of the benefits associated with searching the blogo-
sphere; briefly look at RSS, a standard publishing format; and provide an overview of
the different blog tracking providers.

5.1.1 Leveraging the blogosphere

In the previous chapter, I mentioned that content is the building block for applica-
tions. Many times, you have to go outside your application to get relevant content. It’s

1 As of September 2008, there were more than 150 companies that tracked various kinds of RSS feeds.
2 As of September 2008, Technorati was tracking more than 112 million blogs.

109Introducing the blogosphere
common for applications to get news feeds and then show relevant news based on the
context and the user. Similarly, the growing blogosphere provides a rich set of con-
tent—the collective set of blogs that can shape the minds of others—that can be
aggregated and shown when relevant. Continuing with our example, if your applica-
tion were in the business of selling the latest version of an operating system, perhaps it
would be useful to show users blog entries from people who’ve expressed their experi-
ences in using the new operating system.

 Finding relevant content consists of two parts: first you need to aggregate or find con-
tent, and second you need to determine whether the context is relevant. This chapter
focuses on the first part. You should be able to determine the relevance of the retrieved
document to an item of interest using the similarities in the term vectors for the two
items. The infrastructure for this similarity computation is developed in chapter 8.

 Using the framework developed in this chapter, you should be able to build a fea-
ture that periodically queries the blogosphere for relevant blog entries. This could be
helpful in protecting your brand; you can automate the retrieval of relevant blog
entries and extract keywords to determine either positive or negative comments about
your brand. The retrieved items could also be classified for review by a human.

 Next, let’s briefly look at RSS, one of the key enabling technologies for searching
the blogosphere. If you’re already familiar with RSS, you can skip this section.

5.1.2 RSS: the publishing format

Chances are that there are hundreds of articles or other content that you’d like to
keep track of on the Internet. This could be tracking blog entries of your favorite
bloggers or following news as it unfolds. It’s virtually impossible to manually go and
check for updates for each of these. Fortunately, software is pretty good at automating
this repetitive task. Most sites publish their content in a standard format, RSS, that’s
understood by programs such as RSS readers or aggregators, which automatically
check for updates and retrieve new content when available.

 RSS allows you to publish content to the Web in an XML format that’s commonly
understood and also track other sites for updates using a similar format. Formats for
publishing content on the Web have existed from the early days of the Internet. RSS has
a rich history, and the acronym RSS stands for different things, as we’ll soon see. Given
the various formats, it’s helpful to spend a few minutes understanding its history.

 In March 1999, the first version of RSS3 —RDF Site Summary—was created by
Netscape. This version became known as RSS 0.9. There were two camps in the RSS
community. The first camp wanted to make better use of RDF in RSS, while the other
camp wanted to simplify the format and remove RDF. A few months later, in June 1999,
Dan Libby produced a prototype called RSS 0.91 that simplified the format, removed all
reference to RDF, and incorporated parts of an earlier syndication format created by
Dave Winer, an influential blogger from Userland Software. In this version, RSS stood
for Rich Site Summary. In late December 2000, Dave Winer released RSS 0.92, and then
released a final version in September 2002, known as RSS 2.0. Here, RSS stands for Really

3 Resource Description Framework—a language for describing resources on the web

110 CHAPTER 5 Searching the blogosphere
Simple Syndication; RSS 2.0 is the most widely used newsfeed format. But there’s more to
this story.

 In 2003, a group of influential bloggers and XML experts got together to develop a
new newsfeed format known as Atom. Almost every part of RSS 2.0 is optional, and
developers can extend the specification by using namespace-qualified vocabularies.
This vagueness caused issues with interoperability among different vendor implemen-
tations. The influential bloggers joined forces with the Internet Engineering Task
Force (IETF) and aimed to develop a new format that was

100 percent vendor-neutral, implemented by everybody, freely extensible by anybody, and
cleanly and thoroughly specified.

 —The Atom Wiki, June 2003.
 http://www.intertwingly.net/wiki/pie/RoadMap

IETF developed the Atom Publishing Format and Atom Publishing Protocol, and
released Atom as an internet standard in 2005. Most blog search providers, with the
exception of Blogger.com, provide results in RSS 2.0 format (see http://blogs.law.
harvard.edu/tech/rss). Blogger.com provides results in the Atom format.

 Listing 5.1 shows a sample of an RSS 2.0 output from Blogdigger.com. We later use
this listing in section 5.6 to integrate Blogdigger. Each channel has a number of differ-
ent <item>s associated with it. This XML snippet gives you a sense of the elements
used in RSS 2.0, perhaps the most commonly used RSS version.

<rss version="2.0">
 <channel>
 <title>Blogdigger search for collective intelligence</title>
 <link>://www.blogdigger.com/search/collective+intelligence</link>
 <description>Blogdigger search for collective intelligence
 </description>
 <ttl>60</ttl>
 
 <item>
 <title>Water - the basic system flow and missing learning …</title>
 <link>http://waterangels.blogspot.com/2006/12/water-basic-system-
flow-and-missing.html</link>
 <description>When info from our various network … ….</description>
 <pubDate>Mon, 1 Jan 2007 00:38:00 EST</pubDate>

 <source url="http://waterangels.blogspot.com/atom.xml">what the …
 </source>
 <author>macrae.nets</author>
 </item>
</channel>
<?xml version="1.0" encoding="UTF-8"?></rss>

Listing 5.1 Example of RSS 2.0 from Blogdigger.com

http://www.intertwingly.net/wiki/pie/RoadMap
http://blogs.law.harvard.edu/tech/rss
http://blogs.law.harvard.edu/tech/rss

111Building a framework to search the blogosphere
If you want to find out more about RSS, Manning has an excellent book on RSS and
Atom, RSS and Atom in Action: Web 2.0 Building Blocks, by Dave Johnson. Chapter 12 of
the book, Searching and Monitoring the Web, also presents a good overview of blog
search engines.

 Next, let’s look at companies that are in the business of tracking blogs and other
RSS newsfeeds.

5.1.3 Blog-tracking companies

Fueled by the growth of the self-publishing phenomenon, a large number of companies
track what’s being published on the Web. As of early 2008, there were more than 40
blog-search engines; some of the best are Technorati, Google, Yahoo!, MSN, Sphere,
IceRocket, Bloglines, Blogdigger, DayPop, Zopto, Postami, and Read A Blog.

 If you publish content, you want others to find it. This is most easily done by notify-
ing blog-tracking providers of the change. A number of companies allow you to notify
multiple blogs and feed-tracking providers. By pinging these providers, you’re notify-
ing these services that content on your site has changed, and they then crawl your site
to get the new content and publish it. By pinging these services, you decrease how long
it takes before your content is published by these content-tracking providers. Ping-
oat (http://www.pingoat.com/), Pingomatic (http://pingomatic.com/), Blogflux
(http://pinger.blogflux.com/), Feedshark (http://feedshark.brainbliss.com/), and
King Ping (http://kping.com/) are examples of services that ping multiple providers.

 APIs provided by these providers typically include the ability to search for rele-
vant blogs using search terms or tags, as well as information on who’s connecting to
various blogs using either HTTP Get or HTTP Post. We discuss these kinds of APIs in
sections 5.4 and 5.5.

 With this background, we’re now ready to build a framework to search the blogo-
sphere. We follow a step-by-step approach, beginning with a generalized framework,
building the base classes, and then integrating various providers.

5.2 Building a framework to search the blogosphere
Given the large number of blog-tracking providers, chances are that you may want to
integrate more than one of them in your application. The framework we develop in
this chapter abstracts out the differences between the APIs for these different provid-
ers; thus it’s easy for your application to add new providers and not be coupled to a
specific API or a single provider.

 As shown in figure 5.1, there are four steps involved in searching the blogosphere:

1 Create a query that’s submitted to a blog searcher.
2 The blog searcher translates this query into a format that can be understood by

the blog-tracking provider and sends this information to the provider using
either HTTP Get or HTTP Post.

3 The blog-tracking provider processes the request and sends back an XML
response.

4 The response is parsed by the blog searcher and a response in a standard for-
mat is sent back to the client.

http://www.pingoat.com/
http://pingomatic.com/
http://pinger.blogflux.com/
http://feedshark.brainbliss.com/
http://kping.com/

112 CHAPTER 5 Searching the blogosphere
Therefore, to develop a generic framework, we need the four main interfaces that are
shown in figure 5.2:

■ BlogQueryParameter: captures the query made by the client
■ BlogSearcher: translates and submits the query to the provider
■ BlogSearchResponseHandler: used by the BlogSearcher to process the response

XML
■ BlogQueryResult: the canonical response to query

Blog

Tracking

Provider

Blog

Searcher

Blog

Blog

1. Query

 2. Translate and
 send to provider

3. XML response
from provider

4. Parse and
send response

Figure 5.1 Four steps in
searching the blogosphere

Figure 5.2 The generic architecture for the blog searcher

113Building a framework to search the blogosphere
Next, let’s look at each of these main interfaces. The API is fairly generic, using
generic objects as input to the methods and for the results from the query. The API
should be resilient to changes as you integrate more blog-tracking providers.

5.2.1 The searcher

The BlogSearcher is the main class that coordinates the process of searching. List-
ing 5.2 shows the BlogSearcher interface.

package com.alag.ci.blog.search;

public interface BlogSearcher {
 public BlogQueryResult getRelevantBlogs(BlogQueryParameter param)
 throws BlogSearcherException;
}

BlogSearcher contains only one method:

public BlogQueryResult getRelevantBlogs(BlogQueryParameter param)
 throws BlogSearcherException;

which takes a BlogQueryParameter, returns a BlogQueryResult, and throws a Blog-
SearcherException.

 Next, let’s look at the input to the search: BlogQueryParameter.

5.2.2 The search parameters

Parameters for the search are encapsulated in the BlogQueryParameter interface,
whose code is shown in listing 5.3.

package com.alag.ci.blog.search;

import java.util.Collection;

public interface BlogQueryParameter {
 public enum QueryType {SEARCH,TAG};
 public enum QueryParameter {KEY, APIUSER, START_INDEX, LIMIT,
 QUERY, TAG,SORTBY, LANGUAGE};

 public String getParameter(QueryParameter param);
 public void setParameter(QueryParameter param, String value);
 public Collection<QueryParameter> getAllParameters();
 public QueryType getQueryType();
 public String getMethodUrl();
}

There are two enums: QueryType and QueryParameter. There are two types of queries
that can be made—search by a query string or search by a specified tag:

enum QueryType {SEARCH,TAG};

You may want to generalize to additional search commands in your application. Simi-
larly, the following

public enum QueryParameter {KEY, APIUSER, START_INDEX, LIMIT,
 QUERY, TAG, SORTBY, LANGUAGE};

Listing 5.2 BlogSearcher interface

Listing 5.3 The BlogQueryParameter interface

Return relevant blogs
using query parameters

Type of
search

Type of query
parameters

114 CHAPTER 5 Searching the blogosphere
specifies the different parameters that can be set for the query. It’s nearly impossible
to list all parameters (a lot of them optional) across the various blog-tracking provid-
ers. The enumerated list is the subset of features that we support in our API. Table 5.1
contains a description of the QueryParameters.

There are two methods to retrieve the QueryParameter:

String getParameter(QueryParameter param);
Collection<QueryParameter> getAllParameters();

The URL for connecting to a provider is dependent on the type of search and the pro-
vider. This can be retrieved using String getMethodUrl();. This doesn’t need to be
specified by the calling client code. We’ll build implementations of QueryParameter
that automatically set the URL for each provider.

 Next, let’s look at how results are returned by the BlogSearcher.

5.2.3 The query results

BlogQueryResult is a container object that contains the result of the blog search
query, as shown in figure 5.3. For building a generic API that will be resilient to changes
over time, it’s almost always better to return a rich object such as the container Blog-
QueryResult rather than just a List. You can add more details to the BlogQuery-
Result, perhaps by how long the query took or whether multiple blog-tracking
providers were queried. Listing 5.4 shows the code for the BlogQueryResult, which
consists of two methods.

package com.alag.ci.blog.search;
import java.util.List;

public interface BlogQueryResult {

Table 5.1 Description of the QueryParameters

QueryParameter Description

KEY, APIUSER A unique-token KEY and APIUSER name that may need to be passed to the
provider. This key and name identify the caller to the provider. The provider may
authenticate if the caller has privileges to make the call. This also gives the pro-
vider the capability to charge for calls made if required.

START_INDEX,
LIMIT

There may be a large number of results available from the query. Typically, LIMIT
specifies the maximum number of results returned from the START INDEX. For
example, if there are 100 results, specifying START INDEX of 20 and LIMIT
of 10 will return results 20–29.

QUERY, TAG The query string is populated either as a QUERY or a TAG based on whether
we’re interested in search queries or tag related blog entries.

SORTBY Specifies how the results should be sorted, for example, by date or title.

LANGUAGE Language of blog entries.

Listing 5.4 The BlogQueryResult interface

115Building a framework to search the blogosphere
 public Integer getQueryCount();
 public List<RetrievedBlogEntry> getRelevantBlogs();
}

The number of results returned by the query is accessed through the following method:

int getQueryCount();

Note that this count is the total number of results, not necessarily the same as the
number of blog entries retrieved in this query. The list of blog entries retrieved is

List<RetrievedBlogEntry> getRelevantBlogs();

RetrievedBlogEntry represents one retrieved blog entry, and its specification is shown
in figure 5.3. The attributes of RetrievedBlogEntry are a subset of all the attributes of
a blog entry (see BlogEntry in section 4.3.1) and represent common attributes that
are available across different blog-tracking providers. Note that some providers may
expose only a subset of these attributes in their APIs. RetrievedBlogEntry contains
the name of the blog, getName(), which is different from the title of the blog entry,
String getTitle();.

The BlogSearcher normally receives an XML response from the provider. This XML is
handled by a BlogSearchResponseHandler, which parses the response and converts it
into BlogQueryResult.

5.2.4 Handling the XML response

The response XML received from a provider is handled by BlogSearchResponse-
Handler. The BlogSearchResponseHandler interface, as shown in figure 5.4, consists
of a single method, getBlogQueryResult(). For parsing the XML results, it uses Xml-
Token objects, corresponding to the XML tags.

Returns total
number of results Returns list of

blog entries

Figure 5.3 The BlogQueryResult object

Figure 5.4
BlogSearchResponse-
Handler and XMLToken

116 CHAPTER 5 Searching the blogosphere
Listing 5.5 contains the code for the interface BlogSearchResponseHandler.

package com.alag.ci.blog.search;

public interface BlogSearchResponseHandler {
 public BlogQueryResult getBlogQueryResult();
}

The code BlogQueryResult getBlogQueryResult(); returns the resulting result
object from the parsed XML.

 The SAX parsing deals with tokens, which are represented by the interface shown
in figure 5.4. The XmlToken interface has only one method, String getTag();, which
returns the associated XML tag.

 A number of exceptions can be thrown while talking to external providers. Next,
let’s look at how exceptions are handled in the framework.

5.2.5 Exception handling

All exceptions are wrapped in a common exception, BlogSearcherException, which
is used for throwing exceptions throughout the package. Listing 5.6 contains the code
for the BlogSearcherException, which is a checked exception, so the caller code needs
to handle it.

package com.alag.ci.blog.search;

public class BlogSearcherException extends Exception {
 public BlogSearcherException(String message, Throwable cause) {
 super(message, cause);
 }
 public BlogSearcherException(String message) {
 super(message);
 }
}

The constructor BlogSearcherException nests the underlying Throwable, and the
new exception is created with the original cause attached, as is typically done with
chained exceptions.

 So far we’ve looked at the process of searching the blogosphere and introduced
interfaces for the main entities that will be used in our framework. Next, let’s imple-
ment the base classes for these interfaces. Provider-specific implementations will
extend these base classes.

5.3 Implementing the base classes
We’d like most of the heavy lifting to be done by the base implementations, so as to min-
imize the amount of code required to integrate a new provider. Next, we implement

Listing 5.5 The BlogSearchResponseHandler interface

Listing 5.6 Implementation of BlogSearcherException

Retrieves result
from blog query

Constructor to
chain exceptions

117Implementing the base classes
each of the interfaces introduced in the previous section; we begin with an easy one:
BlogQueryParameterImpl.

5.3.1 Implementing the search parameters

Each provider has a unique URL, and we’ll have multiple implementations of the
BlogQueryParameter that will extend from the base class BlogQueryParameterImpl.

 BlogQueryParameterImpl is an abstract class, whose implementation is shown in
listing 5.7.

package com.alag.ci.blog.search.impl;

import java.util.*;

import com.alag.ci.blog.search.BlogQueryParameter;

public abstract class BlogQueryParameterImpl
implements BlogQueryParameter {
 private Map<QueryParameter,String> params = null;
 private QueryType queryType = null;
 private String methodUrl = null;

 public BlogQueryParameterImpl(QueryType queryType, String methodUrl)
 this.queryType = queryType;
 this.methodUrl = methodUrl;
 this.params = new HashMap<QueryParameter,String>();
 }

//get methods

 public void setParameter(QueryParameter param, String value) {
 this.params.put(param, value);
 }
}

BlogQueryParameterImpl uses the following to store the QueryParameters:

private Map<QueryParameter,String> params = null;

It also has a variable QueryType to store the type of query being made and methodUrl
to store the provider URL. The rest of the code consists of get methods for the three
attributes. The constructor BlogQueryParameterImpl sets the queryType and the
methodUrl. There are no set methods for these two attributes—the derived classes will
pass these two attributes to the constructor.

 Next, let’s look at implementing the result objects.

5.3.2 Implementing the result objects

As shown in figure 5.5, BlogQueryResultImpl implements BlogQueryResult. Null-
BlogQueryResultImpl extends BlogQueryResultImpl and represents the case when
there are no results found for a blog query.

Listing 5.7 Implementation of BlogQueryParameterImpl

Uses Map to store
QueryParameters

Constructor to
set queryType

and methodUrl

118 CHAPTER 5 Searching the blogosphere
The implementation of BlogQueryResultImpl is straightforward. It consists of two
attributes. The first stores the List of retrieved blog entries:

 private List<RetrievedBlogEntry> results = null;

The other stores the query count:

 private Integer queryCount = null;

NullBlogQueryResultImpl extends BlogQueryResultImpl and has a constructor that
sets the results List to an empty Collections.EMPTY_LIST:

 public NullBlogQueryResultImpl() {
 super();
 this.setResults(Collections.EMPTY_LIST);
 }

The method getRelevantBlogs returns a List of RetrievedBlogEntry objects,
which is implemented by RetrievedBlogEntryImpl. RetrievedBlogEntryImpl is a
JavaBean object with seven attributes to implement the interface RetrievedBlog-

Entry. There are standard get and set methods and a toString method to print out
the attributes.

 So far we’ve implemented the classes for representing the query and the results.
Next, let’s look at the implementation of the BlogSearcher, which is responsible for
coordinating the search.

Figure 5.5 Two implementations
for BlogQueryResult

119Implementing the base classes
5.3.3 Implementing the searcher

Implementations of BlogSearcher are responsible for converting the input query
from the client into a format that the blog-tracking provider can understand and then
processing the XML response back from the provider. Figure 5.6 shows the base imple-
mentation for the BlogSearcher. Note that there is only one public method that
needs to be implemented:

public BlogQueryResult getRelevantBlogs(BlogQueryParameter param)
 throws BlogSearcherException {

We use SAX4 parsing to process the XML returned by the provider. We use JAXP5—a
small layer on top of SAX—to plug in parsers from different vendors without changing

4 http://www.saxproject.org/apidoc/overview-summary.html
5 http://java.sun.com/webservices/jaxp/index.jsp

Figure 5.6 Base implementation
for BlogSearcher

http://www.saxproject.org/apidoc/overview-summary.html
http://java.sun.com/webservices/jaxp/index.jsp

120 CHAPTER 5 Searching the blogosphere
the basic code. We use the Apache Xerces-J6 parser. SAX parsing consists of creating a
content handler and invoking the parser with the content handler.

 Communication with blog-tracking providers occurs using the Hypertext Transfer
Protocol (HTTP). The java.net class provides basic functionality for accessing
resources via HTTP. However, the Apache Jakarta Commons HttpClient7 package
provides an easy way to use the HTTP protocol. This open source project follows the
Apache Source License and provides flexibility for source and binary reuse.

NOTE You can download the HttpClient library from http://jakarta.apache. org/
commons/httpclient/downloads.html. Don’t forget to also download the
dependent jar files: commons-codec.jar and commons-logging.jar.

Listing 5.8 contains the first half of the code for BlogSearcherImpl. This half deals
with creating the SAX parser.

package com.alag.ci.blog.search.impl;

import java.io.*;
import java.net.URLEncoder;
import java.util.*;

import javax.xml.parsers.*;

import org.apache.commons.httpclient.*
import org.apache.commons.httpclient.params.HttpMethodParams;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.DefaultHandler;

import com.alag.ci.blog.search.*;
import com.alag.ci.blog.search.BlogQueryParameter.QueryParameter;

public abstract class BlogSearcherImpl implements BlogSearcher {
 private static final String JAXP_PROPERTY_NAME =
 "javax.xml.parsers.SAXParserFactory";
 private static final String APACHE_XERCES_SAX_PARSER =
 "org.apache.xerces.jaxp.SAXParserFactoryImpl";

 private SAXParser parser = null;
 private Map<QueryParameter, String> paramStringMap = null;

 protected BlogSearcherImpl() throws BlogSearcherException {
 createSAXParser();
 initializeParamStringMap();
 }

 private void createSAXParser() throws BlogSearcherException {
 if (System.getProperty(JAXP_PROPERTY_NAME) == null) {
 System.setProperty(JAXP_PROPERTY_NAME,APACHE_XERCES_SAX_PARSER);
 }
 SAXParserFactory factory = SAXParserFactory.newInstance();
 try {

6 http://xerces.apache.org/xerces2-j/
7 http://jakarta.apache.org/commons/httpclient/

Listing 5.8 First half of BlogSearcherImpl—SAX parser

See downloaded
code for full list

Sets name
of SAX
parser
factory

Creates instance
of SAX parser

Creates instance
of parser factory

http://jakarta.apache.org/commons/httpclient/downloads.html
http://jakarta.apache.org/commons/httpclient/downloads.html
http://xerces.apache.org/xerces2-j/
http://jakarta.apache.org/commons/httpclient/

121Implementing the base classes

 this.parser = factory.newSAXParser();
 } catch(ParserConfigurationException e) {
 throw new BlogSearcherException("SAX parser not found",e);
 } catch(SAXException se) {
 throw new BlogSearcherException("SAX exception",se);
 }
 }

 protected void initializeParamStringMap() {
 paramStringMap = new HashMap<QueryParameter, String>();
 }

 protected Map<QueryParameter, String> getParamStringMap() {
 return paramStringMap;
 }

 protected SAXParser getSAXParser() {
 return this.parser;
 }

The system property javax.xml.parsers.SAXParserFactory needs to be set to spec-
ify which instance of the SAX parser is to be used. This is set to org.apache.
xerces.jaxp.SAXParserFactoryImpl in our case. The constructor creates an instance
of the SAX parser:

protected BlogSearcherImpl() throws BlogSearcherException {
 createSAXParser();

For this, it first creates a SAXParserFactory:

SAXParserFactory factory = SAXParserFactory.newInstance();

And through the factory, it creates an instance of the parser:

this.parser = factory.newSAXParser();

The attribute paramStringMap stores a Map of QueryParameters and their values.
 Next, let’s look at listing 5.9, which deals with submitting an HTTP request and

handling the XML response.

 public BlogQueryResult getRelevantBlogs(BlogQueryParameter param)
 throws BlogSearcherException {
 BlogQueryResult result = new NullBlogQueryResultImpl();
 HttpClient client = new HttpClient();
 HttpMethod method = getMethod(param);
 method.getParams().setParameter(HttpMethodParams.RETRY_HANDLER,
 new DefaultHttpMethodRetryHandler(3, false));

 try {
 int statusCode = client.executeMethod(method);
 if (statusCode == HttpStatus.SC_OK) {
 InputStream is = method.getResponseBodyAsStream();
 result = parseContent(is);
 is.close();
 }

Listing 5.9 Second half of BlogSearcherImpl—HTTP and parsing response

Uses factory to create
instance of parser

Initialized
with null
response

Could be POST or GET

Custom retry

Execute method

Parse
content

122 CHAPTER 5 Searching the blogosphere
 } catch (HttpException he) {
 throw new BlogSearcherException("HTTP exception ", he);
 } catch (IOException ioe) {
 throw new BlogSearcherException(
 "IOException while getting response body", ioe);
 } finally {
 method.releaseConnection();
 }
 return result;
 }

 protected abstract HttpMethod getMethod(BlogQueryParameter param);

 protected abstract BlogSearchResponseHandler
 getBlogSearchResponseHandler();

 private BlogQueryResult parseContent(InputStream is)
 throws BlogSearcherException {
 try {
 BlogSearchResponseHandler h = getBlogSearchResponseHandler();
 this.getSAXParser().parse(is, (DefaultHandler) h);
 return h.getBlogQueryResult();
 } catch (SAXException se) {
 throw new BlogSearcherException("Error parsing Response XML",
 se);
 } catch (IOException ioe) {
 throw new BlogSearcherException("IOException while parsing
 XML", ioe);
 }
 }

 public static String urlEncode(String s) {
 String result = s;
 try {
 result = URLEncoder.encode(s, "UTF-8");
 } catch (UnsupportedEncodingException e) {
 System.out.println("Unsupported encoding exception thrown");
 }
 return result;
 }
}

Initially, the result BlogQueryResult is initialized to a null implementation, in case of
no response back from the provider:

BlogQueryResult result = new NullBlogQueryResultImpl();

The code first creates an instance of the HttpClient:

HttpClient client = new HttpClient();

Next, it creates an instance of HttpMethod, either Get or Post:

HttpMethod method = getMethod(param);

The getMethod() method is abstract and will be implemented by the inheriting
classes. The method is executed on the client and a status code is returned, which can
be used to determine if the request was successful.

Parse content
using custom
handler

GET methods must
be URL-encoded

UTF-8 is
supported

123Implementing the base classes
 There are two kinds of exceptions that can be thrown:

■ HttpException —Represents a logical error.
■ IOException —Represents a transport error. This is likely to be an I/O error.

The following code sets the default recovery procedure to recover when a plain
IOException is thrown:

method.getParams().setParameter(HttpMethodParams.RETRY_HANDLER,
 new DefaultHttpMethodRetryHandler(3, false));

HttpClient will retry the request three times, provided the request was never fully
submitted to the blog-tracking provider.

 Next, the response back from the provider is read in as a stream:

InputStream is = method.getResponseBodyAsStream();
result = parseContent(is);

The parseContent() method gets the appropriate response handler to parse the
response.

 Parameters for get methods need to be URL-encoded—for example, collective intelli-
gence gets converted to collective+intelligence. The following code

public static String urlEncode(String s)

is available for inheriting classes to encode the parameters using UTF-8 encoding,
which is the recommended encoding scheme.

 In this section, we developed the base class for coordinating the search. The last
class to be implemented is the base class for handling the XML response.

5.3.4 Parsing XML response

An implementation of the BlogSearchResponseHandler is responsible for parsing the
XML response from the provider and creating a BlogQueryResult. BlogSearch-
ResponseHandlerImpl is the base class that other instances extend. This base class does
most of the heavy lifting for writing a specific implementation of BlogSearchResponse-
Handler. Figure 5.7 shows the methods in BlogSearchResponseHandlerImpl. Default-
Handler8 is the base class for SAX event handlers and contains default implementations
for the callbacks.

 For consistency across the different parsers, we use Java 1.5’s Enum9 capabilities.
Each XML file has different tokens for the returning values. Each of the XML tokens
that we’re interested in is enumerated in an Enum that implements the XMLToken inter-
face. This abstraction helps factor a lot of the XML processing out to the base class.

 Typically, the retrieved response from the providers contains date strings; for
example, the last updated time for the blog entry or the date the blog entry was cre-
ated. Unfortunately, different providers use different formats for the date string.

8 http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/helpers/DefaultHandler.html
9 http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html

http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/helpers/DefaultHandler.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html

124 CHAPTER 5 Searching the blogosphere
“Mon, 01 Jan 2007 04:20:38 GMT” and “24 Dec 06 01:44:00 UTC” are examples of date
formats that are returned from providers—refer to table 5.2 for a more complete list.
A DateFormat object is used to parse the String into a Date object.

With that overview, let’s look at listing 5.10, which has the first part of the code for
BlogSearchResponseHandlerImpl. This listing shows the constructor along with the
attributes for the class.

package com.alag.ci.blog.search.impl;

import java.text.*;
import java.util.*;

Table 5.2 The different date formats returned by the different providers

Date format Example Blog-tracking providers

yyyy-MM-dd HH:mm:ss 2008-01-10 11:25:56 Technorati—tag search

EEE, dd MMM yy HH:mm:ss zzz Mon, 01 Jan 2007 04:20:38 GMT Bloglines

yyyy-MM-dd HH:mm:ss zzz 2007-01-10 19:21:49 GMT Technorati—query search

dd MMM yy HH:mm:ss zzz 24 Dec 06 01:44:00 UTC RSS feed, MSN, Blogdigger

Listing 5.10 Constructor and attributes for BlogSearchResponseHandlerImpl

Figure 5.7 The base class for SAX parsing handlers

125Implementing the base classes
import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

import com.alag.ci.blog.search.*;

public abstract class BlogSearchResponseHandlerImpl extends
 DefaultHandler implements BlogSearchResponseHandler {
 private BlogQueryResultImpl result = null;
 private List<RetrievedBlogEntry> entries = null;
 private RetrievedBlogEntryImpl item = null;
 private XmlToken whichToken = null;
 private Map<String, XmlToken> tagMap = null;
 private String charString = null;
 private DateFormat dateFormat = null;
 private DateFormat timeZoneDateFormat = null;
 private DateFormat timeZoneDayDateFormat = null;
 private DateFormat timeZoneYearDateFormat = null;

 public BlogSearchResponseHandlerImpl() {
 this.result = new BlogQueryResultImpl();
 this.entries = new ArrayList<RetrievedBlogEntry>();
 this.result.setResults(this.entries);
 this.tagMap = new HashMap<String, XmlToken>();
 for (XmlToken t : getXMLTokens()) {
 this.tagMap.put(t.getTag(), t);
 }
 this.dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
 this.timeZoneDayDateFormat =
 new SimpleDateFormat("EEE, dd MMM yy HH:mm:ss zzz");
 this.timeZoneYearDateFormat =
 new SimpleDateFormat("yyyy-MM-dd HH:mm:ss zzz");
 this.timeZoneDateFormat =
 new SimpleDateFormat("dd MMM yy HH:mm:ss zzz");
 }

 protected abstract XmlToken [] getXMLTokens();

protected abstract boolean isBlogEntryToken(XmlToken t) ;

//get methods
 }

The attributes

 private BlogQueryResultImpl result = null;
 private List<RetrievedBlogEntry> entries = null;
 private RetrievedBlogEntryImpl item = null;

store the resulting BlogQueryResult, the List of RetrievedBlogEntry objects, and
the current RetrievedBlogEntry being processed.tagMap contains the list of tokens
we’re interested in. Each subclass implements the abstract getXMLTokens() method
to return an array of tokens we’re interested in. The subclasses also implement
another abstract method, isBlogEntryToken(), which specifies which XML token cre-
ates a new entry in the result object.

 Next, let’s look at listing 5.11, which contains the parsing-related methods.

Stores result

Tracks which token
is being parsed

Formats for handling
date parsing

XML tokens we’re
interested in

Determines if
token create
new item

126 CHAPTER 5 Searching the blogosphere
 public void startElement(String namespaceURI, String localName,
 String qName, Attributes atts) throws SAXException {
 XmlToken t = this.tagMap.get(qName);
 if (t != null) {
 this.whichToken = t;
 if (isBlogEntryToken(t)) {
 this.item = new RetrievedBlogEntryImpl();
 this.entries.add(this.item);
 }
 }
 charString = "";
 }

 public void endElement(String namespaceURI, String sName, String qName)
 throws SAXException {
 this.whichToken = null;
 }

 public abstract void characters(char buf[], int offset, int len)
 throws SAXException ;

//get/set charString
//protected Date getParsedDate(String s) {
}

In SAX parsing, startElement and endElement are the methods that get called at the
start and end of an element. The startElement method takes four parameters. The
first is the namespaceURI, which is left empty if there is no namespace. The second is
localName (without prefix), or an empty String if namespace processing isn’t being
performed—both the namespaceURI and localName are empty strings for our sample
XML. The third is the fully qualified element name; for example, weblog or name.
The fourth parameter lists any attributes attached to the element. The endElement
takes only the first three parameters, since end tags aren’t permitted any attributes.

 The following code

 public void startElement(String namespaceURI, String localName,
 String qName, Attributes atts) throws SAXException {

checks to see if a new instance of an item is available and resets the charString. The
method characters() gets called by the SAX parser to report each chunk of character
data. This method may be called multiple times for an element; the charString takes
care of concatenating the String of characters together.

 The utility method getParsedDate() contains logic to select the right date parser
and convert the String to a Date object.

 That takes care of all the base implementations in our framework. Now, let’s
look at how this framework will be extended to integrate the different blog-tracking
providers.

Listing 5.11 Parsing-related code for BlogSearchResponseHandlerImpl

Create new instance
for new item

Reinitialize it for
new XML token

Parse date string

127Implementing the base classes
5.3.5 Extending the framework

Figure 5.8 gives an overview of the classes that we build. Basically, for each integration,
we extend the three classes: BlogSearcherImpl for blog searching, BlogSearch-
ResponseHandlerImpl for handling the XML response, and BlogQueryParameterImpl
for configuring the search parameters.

Figure 5.9 shows the classes that will extend BlogQueryParameterImpl to configure
the URL that the instance of BlogSearcher will access.

 So far we’ve implemented the base classes for our framework. Now let’s integrate
various blog-tracking providers. We begin with integrating Technorati, who tracks the
largest number of blogs—more than 112.8 million blogs as of September 2008. I
selected Technorati and Bloglines for their popularity, as well as to illustrate how to
integrate a custom API.

<<realize>><<realize>>

<<realize>>

<<realize>>

<<realize>>

Figure 5.8 The interfaces and their implementing classes

<<Interface>>

BlogQueryParameter

I

<<realize>>

TechnoratSearchBlogQueryParameterImplC

TechnoratTagBlogQueryParameterImplC RSSFeedBlogQueryParameterImplC

BlogQueryParameterImplC

BlogLineSearchBlogQueryParameterImplC

Figure 5.9 The classes extending BlogQueryParameterImpl

128 CHAPTER 5 Searching the blogosphere
5.4 Integrating Technorati
In early December 2006, Jeremy Caplan of Time magazine profiled Technorati, calling
it the “Searchlight for the Blogosphere.” In his words:

If Google is the Web’s reference library, Technorati is becoming its coffeehouse, where people
go to find out what’s being said and by whom. Rather than send you to Madonna’s web
site if you punch her name into its search box, Technorati tells you the latest buzz about her
career—and her adoption saga.

Technorati provides an API10 that allows developers to

■ Search for blog postings that use specified keywords or are tagged with those
keywords. Furthermore, you can find out which blogs link to a particular URL.

■ Get the list of top tags that have been indexed by Technorati.
■ Get detailed information about a blog, such as its available feeds and how many

other blogs link to it.
■ Get information about a Technorati member.

In this section, we look at how to use our framework to search for relevant blogs using
the two APIs provided, search and tag. Using this approach, you should be able to
extend the framework to query Technorati for other functionality.

 To access Technorati’s API, you first need to sign up for the Technorati developer
program and agree to the terms of service. Technorati’s API returns results in its own
proprietary XML as well as common feed formats such as RSS. In this section, we
extend our framework to use Technorati’s custom API, which provides a richer set of
information than the RSS feed. Once you sign up for the service, you’ll get a unique
API key from Technorati, which you can see at the Technorati API information page.

5.4.1 Technorati search API overview

Using the Technorati API, you can search for blog entries using either the search
query or the tag query. The query parameters and response XML are similar in both
cases. Technorati uses a RESTful interface for their API, where you can send either a
Post or a Get. Let’s look at the details for both these queries.
TECHNORATI SEARCH QUERY

The search API allows you to search for blog entries that contain the given search
string. This gives the same result as entering a search string into Technorati’s search
box. We need to send either a Get or a Post to

 http://api.technorati.com/search?key=[apikey]&query=[words]

with mandatory parameters key and query, and the following optional parameters:

■ format: Output format, either XML or RSS, with XML being the default.
■ language: Two-character language code to retrieve results specific in that lan-

guage. For example, en for English. This feature is in beta and may not work for
all languages.

10 http://www.technorati.com/developers/api/

http://www.technorati.com/developers/api/

129Integrating Technorati
■ start: This parameter, along with the next one (limit), is useful for retrieving
paginated results. If the limit is set to 20, its default value, and start is set to 0,
the API will return entries from 0 to 20. Similarly, if you set start to 40+1, you’ll
get the third set of results from 41 to 60.

■ limit: The number of values returned, which should be between 0 and 100.
There are two more optional parameters: authority, to filter results to those
from blogs with at least the Technorati Authority specified, and claim, to
include user information with each link. We ignore these parameters, as they
aren’t supported by other providers. If you’d like to add them to the API, you
need to extend the enums in QueryParameters and modify the Technorati-
BlogSearcherImpl to take these into account.

Listing 5.12 shows the response XML for the search request, with elements that we’re
interested in shown in bold.

<?xml version="1.0" encoding="utf-8"?>
<!-- generator="Technorati API version 1.0 /search" -->
<!DOCTYPE tapi PUBLIC "-//Technorati, Inc.//DTD TAPI 0.02//EN"
 "http://api.technorati.com/dtd/tapi-002.xml">
<tapi version="1.0">
<document>
<result>
 <query>[query string]</query>
 <querycount>[number of matches]</querycount>
 <querytime>[duration of query]</querytime>
 <rankingstart>[value of start parameter]</rankingstart>
</result>
<item>
 <weblog>
 <author>
 <firstname></firstname>
 <lastname></lastname>
 <username>[username]</username>
 <description></description>
 <bio></bio>
 <thumbnailpicture></thumbnailpicture>
 </author>
 <name>[name of blog containing match]</name>
 <url>[blog URL]</url>
 <rssurl>[blog RSS URL]</rssurl>
 <atomurl>[blog Atom URL]</atomurl>
 <inboundblogs>[inbound blogs]</inboundblogs>
 <inboundlinks>[inbound links]</inboundlinks>
 <lastupdate>[date blog last updated]</lastupdate>
 </weblog>
 <title>[title of entry]</title>
 <excerpt>[blurb from entry with search term highlighted]</excerpt>
 <created>[date entry was created]</created>
 <permalink>[URL of blog entry]</permalink>
</item>

Listing 5.12 Technorati response XML for search query

130 CHAPTER 5 Searching the blogosphere
...
</document>
</tapi>

The element querycount gives the total number of responses. firstname and last-
name correspond to the first and last name of the author—these are combined
together. name, url, title, excerpt, and created correspond to elements in the
RetrievedBlogEntry.
TECHNORATI TAG QUERY

The tag query returns a list of blog entries that have the given tag associated with them.
The API consists of sending either a Get or a Post to http://api.technorati.com/
tag?key=[apikey]&tag=[tag] with the mandatory parameters key and tag, along with
additional optional parameters. format, limit, and start are the same parameters as
described for the search query. There are two other optional parameters:

■ excerptsize: The number of word characters to include in the post excerpt.
We use the default 100 word characters.

■ topexcerptsize: The number of word characters to include in the first post
excerpt. We use the default 150 word characters.

The XML response is similar to that for the search query.

5.4.2 Implementing classes for integrating Technorati

There are four classes that we need to implement:

■ TechnoratiSearchBlogQueryParameterImpl: a search-related query parameter
■ TechnoratiTagBlogQueryParameterImpl: a tag-related query parameter
■ TechnoratiBlogSearcherImpl: an instance of BlogSearcher that coordinates

the search
■ TechnoratiResponseHandler: to handle the XML response

Let’s begin by looking at the two implementations for the QueryParameters.
TECHNORATI QUERY PARAMETERS

TechnoratiSearchBlogQueryParameterImpl implements the QueryParameter for the
search query as shown in listing 5.13.

package com.alag.ci.blog.search.impl.technorati;

import com.alag.ci.blog.search.impl.BlogQueryParameterImpl;

public class TechnoratiSearchBlogQueryParameterImpl extends
 BlogQueryParameterImpl {
 private static final String TECHNORATI_SEARCH_API_URL =
 "http://api.technorati.com/search";

 public TechnoratiSearchBlogQueryParameterImpl() {
 super(QueryType.SEARCH,TECHNORATI_SEARCH_API_URL);
 }
}

Listing 5.13 TechnoratiSearchBlogQueryParameterImpl

URL for
search query

Sets
query type

131Integrating Technorati
The constructor simply sets the query type to search and the URL for the query. Note
that the client code simply needs to create an instance, such as

BlogQueryParameter tbqp = new TechnoratiSearchBlogQueryParameterImpl();

without having to worry about the URL or kind of search.
 Similarly, TechnoratiTagBlogQueryParameterImpl sets the query type to

tag-related search and sets the URL for the tag search:

private static final String TECHNORATI_TAG_API_URL =
 "http://api.technorati.com/tag";

TECHNORATIBLOGSEARCHERIMPL

Listing 5.14 contains the code for TechnoratiBlogSearcherImpl, the Technorati-
related blog searcher. Remember there are two abstract method that this extending
class needs to implement. Further, since both Get and Post can be used, we develop
methods for both.

package com.alag.ci.blog.search.impl.technorati;
import java.util.*;

import org.apache.commons.httpclient.HttpMethod;
import org.apache.commons.httpclient.methods.GetMethod;
import org.apache.commons.httpclient.methods.PostMethod;

import com.alag.ci.blog.search.BlogQueryParameter;
import com.alag.ci.blog.search.BlogSearchResponseHandler;
import com.alag.ci.blog.search.BlogSearcherException;
import com.alag.ci.blog.search.BlogQueryParameter.QueryParameter;
import com.alag.ci.blog.search.impl.BlogSearcherImpl
public class TechnoratiBlogSearcherImpl extends BlogSearcherImpl {
 public TechnoratiBlogSearcherImpl() throws BlogSearcherException {
 }

 protected void initializeParamStringMap() {
 super.initializeParamStringMap();
 Map<QueryParameter, String> paramStringMap = getParamStringMap();
 paramStringMap.put(QueryParameter.KEY, "key");
 paramStringMap.put(QueryParameter.START_INDEX, "start");
 paramStringMap.put(QueryParameter.LIMIT, "limit");
 paramStringMap.put(QueryParameter.QUERY, "query");
 paramStringMap.put(QueryParameter.TAG, "tag");
 paramStringMap.put(QueryParameter.LANGUAGE, "language");
 }

 protected HttpMethod getMethod(BlogQueryParameter param) {
 // return getPostMethod(param);
 return getGetMethod(param);
 }

 private HttpMethod getPostMethod(BlogQueryParameter param) {
 PostMethod method = new PostMethod(param.getMethodUrl());
 Collection<QueryParameter> paramColl = param.getAllParameters();
 for (QueryParameter qp : paramColl) {

Listing 5.14 TechnoratiBlogSearcherImpl

Maps parameters to
Technorati-specific strings

 Use either
Get or Post

132 CHAPTER 5 Searching the blogosphere
 String key = getParamStringMap().get(qp);
 if (key != null) {
 method.addParameter(key, param.getParameter(qp));
 }
 }
 return method;
 }

 private HttpMethod getGetMethod(BlogQueryParameter param) {
 String url = param.getMethodUrl() + "?";
 Collection<QueryParameter> paramColl = param.getAllParameters();
 for (QueryParameter qp : paramColl) {
 String key = getParamStringMap().get(qp);
 if (key != null) {
 url += "&" + key + "=" + urlEncode(param.getParameter(qp));
 }
 }
 return new GetMethod(url);
 }

 protected BlogSearchResponseHandler getBlogSearchResponseHandler() {
 return new TechnoratiResponseHandler();
 }
}

The method initializeParamStringMap() sets the strings for the various query
parameters to those expected by Technorati. These parameters are set in the Post
method and the Get method to compose the URL.

NOTE You can use either Get or Post within our framework, and most of the
work is done by the base class that TechnoratiBlogSearcherImpl
extends. However, some providers support only HTTP GET.

Lastly, we need to look at TechnoratiResponseHandler, which handles the response
and is shown in listing 5.15. Note that most of the implementation deals with imple-
menting the three abstract methods that were specified in the base class BlogSearch-
ResponseHandlerImpl: getXMLTokens(), isBlogEntryToken(), and characters().

package com.alag.ci.blog.search.impl.technorati;

import org.xml.sax.SAXException;

import com.alag.ci.blog.search.XmlToken;
import com.alag.ci.blog.search.impl.*;

public class TechnoratiResponseHandler
 extends BlogSearchResponseHandlerImpl {
 public enum TechnoratiXmlToken implements XmlToken {
 COUNT("querycount"), POSTSMATCHED("postsmatched"), WEBLOG("weblog"),
 NAME("name"), LASTUPDATE("lastupdate"), URL("url"), TITLE("title"),
 EXCERPT("excerpt"), ITEM("item"), CREATED("created"),
 FIRSTNAME("firstname"),LASTNAME("lastname");

Listing 5.15 TechnoratiResponseHandler

Tokens we’re
interested in

133Integrating Technorati
 private String tag = null;

 TechnoratiXmlToken(String tag) {
 this.tag = tag;
 }

 public String getTag() {
 return this.tag;
 }
 }

 private String firstName = null;

 protected XmlToken [] getXMLTokens() {
 return TechnoratiXmlToken.values();
 }

 protected boolean isBlogEntryToken(XmlToken t) {
 return (TechnoratiXmlToken.ITEM.compareTo(
 (TechnoratiXmlToken)t) == 0);
 }

 public void characters(char buf[], int offset, int len)
 throws SAXException {
 String s = this.getCharString() + new String(buf, offset, len);
 this.setCharString(s);
 TechnoratiXmlToken token = (TechnoratiXmlToken) getWhichToken();
 RetrievedBlogEntryImpl item = getItem();
 if (token != null) {
 switch (token) {
 case POSTSMATCHED: {
 this.getResult().setQueryCount(new Integer(s));
 break;
 }
//… Setting other fields when appropriate tokens are matched
 }
 }
 }
}

The TechnoratiXmlToken contains a list of XML tokens that we’re interested in; this
list is returned to the base class by the getXMLToken() method.

 New blog entries are created whenever TechnoratiXmlToken.ITEM token is
encountered, as shown by the implementation of the isBlogEntryToken() method:

 protected boolean isBlogEntryToken(XmlToken t) {
 return (TechnoratiXmlToken.ITEM.compareTo(
 (TechnoratiXmlToken)t) == 0);
 }

Lastly, in the characters() method, appropriate fields in RetrievedBlogEntryImpl
and BlogQueryResultImpl are populated.

 That’s all that’s required to integrate Technorati into our framework. Next, let’s
look at how to call this API. Listing 5.16 shows the output from a unit test that calls
this API.

Which token
corresponds
to new item

Set attribute
based on token

134 CHAPTER 5 Searching the blogosphere

r

http://api.technorati.com/search?&language=en&
 key=xxx&query=collective+intelligence&limit=1
Total=25618
1 Name: Gab Communicates To All (GCTA) …
Url: http://gabrielcomia.multiply.com/blog
Title: The Great Cross of Hendaye, France
Excerpt: The Great Cross of Hendaye, ….
LastUpdateTime: Thu Jan 11 17:02:36 PST 2007
CreationTime: Fri Jan 19 06:04:08 PST 2007
Author:

This output was generated using the unit test in listing 5.17.

public void testTechnoratiSearchQuery() throws Exception {
 BlogSearcher bs = new TechnoratiBlogSearcherImpl();

 BlogQueryParameter searchQueryParam = new
 TechnoratiSearchBlogQueryParameterImpl();
 searchQueryParam.setParameter(QueryParameter.KEY,"[your key]");
 searchQueryParam.setParameter(QueryParameter.LIMIT, "1");
 searchQueryParam.setParameter(QueryParameter.QUERY,
 "collective intelligence");
 searchQueryParam.setParameter(QueryParameter.LANGUAGE, "en");

 BlogQueryResult searchResult =bs.getRelevantBlogs(searchQueryParam);

 System.out.println(searchResult);
 assertTrue("No results", searchResult.getRelevantBlogs().size() >0);
}

Searching Technorati using our framework consists of three steps. First, we create an
instance of TechnoratiBlogSearcherImpl:

BlogSearcher bs = new TechnoratiBlogSearcherImpl();

Second, we create an instance of TechnoratiSearchBlogQueryParameterImpl and set
the query parameters. In this case, we’re searching for English blog entries containing
the keyword collective intelligence:

 BlogQueryParameter searchQueryParam = new
 TechnoratiSearchBlogQueryParameterImpl();

Third, we perform the search:

 BlogQueryResult searchResult =bs.getRelevantBlogs(searchQueryParam);

Doing a tag-based search is similar, except you’ll create an instance of Technorati-
TagBlogQueryParameterImpl:

BlogQueryParameter tagQueryParam = new
 TechnoratiTagBlogQueryParameterImpl();

and set the parameter:

tagQueryParam.setParameter(QueryParameter.TAG,
 "collective intelligence");

Listing 5.16 Output from Technorati search for “collective intelligence”

Listing 5.17 Unit test to call Technorati search

Replace xxx
with your
key code

Total number

Blog entry details

Author not available

Create instance of
Technorati blog searche

 Create
 query parameters

 Do the search

135Integrating Bloglines
With this example, you should have a sense of how easy it is to integrate new blog pro-
viders and invoke them to get relevant blogs. In the next section, we integrate another
blog-tracking provider, Bloglines, using their custom API. This demonstrates how to
handle responses that return information in attributes.

5.5 Integrating Bloglines
Time featured Bloglines as one of its 50 coolest websites in 2004.11 Bloglines is a free
online service that allows people to search, subscribe, share, and create new feeds,
blogs, and rich content. The site indexes “tens of millions of live Internet content
feeds, including articles, blogs, images, and audio,” and allows people to create per-
sonalized news pages. Based in San Francisco, Bloglines is a fully owned subsidiary of
IAC/InterActiveCorp.

 In this section, we look at how to integrate Bloglines into our framework to search
for relevant blogs. Let’s begin by briefly looking at their API.

5.5.1 Bloglines search API overview

In addition to the blog search API, Bloglines provides three other APIs. These are

■ Notifier —For counting unread items in a Bloglines account
■ Sync —For accessing subscription lists and unread blog items
■ Blogroll —For incorporating subscription lists into other sites

We concentrate on the search API in this section, but you should be able to use the
concepts developed in this chapter to access the other APIs.
BLOGLINES SEARCH API

The search API requires a username and key to be submitted in the request for user
authentication. You need to register with Bloglines to retrieve your key. You can find
your key once you’re logged in under the Developers tab under My Account.

 The search API supports Get calls with four required parameters:

■ format=publicapi: specifies that the search page return a publicapi query
result in XML

■ apiuser: the username or email address from the user’s Bloglines account
■ apikey: the API key generated on the Developer Tools tab under Profile

Options
■ q: the URL-encoded search query terms

Here is an example URL call:

http://www.bloglines.com/search?format=publicapi&apiuser=myusername
 &apikey=275938797F98797FA9879AF&q=collective+intelligence

Listing 5.18 contains a sample response with the tokens that we’re interested in shown
in bold.

11 http://www.time.com/time/techtime/200406/news.html

http://www.time.com/time/techtime/200406/news.html

136 CHAPTER 5 Searching the blogosphere
<publicapi>
 <link type="rss" title="Bloglines Search: [search-term]" href=[GET URL]/>
 <resultset set="main" qtype="article"
 estimate="115" found="71">
 <result id="0" siteid="521144" itemid="455" inline="0"
 date="Fri, 26 Jan 2007 20:46:00 GMT" citations="0">
 <site nsubs="26">
 <name>[site name]</name>
 <url>[site url]</url>
 <feedurl[feed url]</feedurl>
 </site>
 <title>[title of blog entry]</title>
 <author>[author]</author>
 <abstract>[abstract]</abstract>
 <url>[url for blog entry]</url>
 </result>
<result>
....
</result>
 </resultset>
</publicapi>

Note that the total number of items retrieved is listed in the attributes for resultset with
the name found, and the date of the blog entry is an attribute for the element result.

5.5.2 Implementing classes for integrating Bloglines

To integrate Bloglines, we need to create three classes: BlogLineSearchBlogQuery-
ParameterImpl for the query parameters, BlogLinesBlogSearcherImpl for searching,
and BlogLinesResponseHandler for handling the XML response.

 BlogLineSearchBlogQueryParameterImpl is similar to the TechnoratiSearch-
BlogQueryParameterImpl class shown in listing 5.13, except that the URL passed in is
http://www.bloglines.com/search. The constructor BlogLineSearchBlogQuery-

ParameterImpl() also sets the query type to search.
 Next, let’s look at the implementation of the BlogLinesBlogSearcherImpl, which

carries out the search.
IMPLEMENTING BLOGLINESBLOGSEARCHERIMPL

BlogLinesBlogSearcherImpl is responsible for carrying out the search, and simply
needs to implement the two abstract methods in the base class:

protected abstract BlogSearchResponseHandler
 getBlogSearchResponseHandler();
protected abstract HttpMethod getMethod(BlogQueryParameter param);

The implementation for BlogLinesBlogSearcherImpl is shown in listing 5.19.

package com.alag.ci.blog.search.impl.bloglines;

import org.apache.commons.httpclient.HttpMethod;
import org.apache.commons.httpclient.methods.GetMethod;

Listing 5.18 Example response from Bloglines search

Listing 5.19 Implementation of BlogLinesBlogSearcherImpl

Total number
of results
found

Specific to
each entry

Repeated for
all entries

http://www.bloglines.com/search

137Integrating Bloglines
import com.alag.ci.blog.search.BlogQueryParameter;
import com.alag.ci.blog.search.BlogSearchResponseHandler;
import com.alag.ci.blog.search.BlogSearcherException;
import com.alag.ci.blog.search.BlogQueryParameter.QueryParameter;
import com.alag.ci.blog.search.impl.BlogSearcherImpl;
public class BlogLinesBlogSearcherImpl extends BlogSearcherImpl {
 public BlogLinesBlogSearcherImpl() throws BlogSearcherException {
 }

 protected BlogSearchResponseHandler getBlogSearchResponseHandler() {
 return new BlogLinesResponseHandler();
 }

 protected HttpMethod getMethod(BlogQueryParameter param) {
 String url = param.getMethodUrl() + "?" +
 "format=publicapi&apiuser=" +
 param.getParameter(QueryParameter.APIUSER)+
 "&apikey=" + param.getParameter(QueryParameter.KEY)+
 "&q=" + urlEncode(param.getParameter(QueryParameter.QUERY));

 GetMethod method = new GetMethod(url);
 return method;
 }
}

The method getMethod() takes three parameters: APIUSER, KEY, and a QUERY set in a
BlogQueryParameter to compose the URL.

 Lastly, we need to create a handler, BlogSearchResponseHandler, to handle the
XML response.
IMPLEMENTING BLOGLINESRESPONSEHANDLER

BlogLinesResponseHandler is responsible for parsing the XML returned from Blog-
lines and converting it to a BlogQueryResult object. Listing 5.20 contains the code for
BlogLinesResponseHandler.

package com.alag.ci.blog.search.impl.bloglines;

import org.xml.sax.Attributes;
import org.xml.sax.SAXException;

import com.alag.ci.blog.search.XmlToken;
import com.alag.ci.blog.search.impl.BlogSearchResponseHandlerImpl;
import com.alag.ci.blog.search.impl.RetrievedBlogEntryImpl;
public class BlogLinesResponseHandler
 extends BlogSearchResponseHandlerImpl {
 public enum BlogLinesXmlToken implements XmlToken {
 NAME("name"), URL("url"), TITLE("title"), RESULT("result"),
//.. and other tokens specific to BlogLines
 }

 protected XmlToken [] getXMLTokens() {
 return BlogLinesXmlToken.values();
 }

 protected boolean isBlogEntryToken(XmlToken t) {
 return (BlogLinesXmlToken.RESULT.compareTo(

Listing 5.20 BlogSearchResponseHandler

 Specifies response handler

Creates
HttpMethod

Enum for elements
of interest

Tag for
next item

138 CHAPTER 5 Searching the blogosphere
 (BlogLinesXmlToken)t) == 0);
 }

 public void startElement(String namespaceURI, String localName,
 String qName, Attributes atts) throws SAXException {
 super.startElement(namespaceURI, localName, qName, atts);

 String dateValue = atts.getValue(
 BlogLinesXmlToken.CREATED.getTag());
 if (dateValue != null) {
 RetrievedBlogEntryImpl item = getItem();
 item.setCreationTime(getParsedDate(dateValue));
 }
 String numFound = atts.getValue(
 BlogLinesXmlToken.FOUND.getTag());
 if (numFound != null) {
 this.getResult().setQueryCount(new Integer(numFound));
 }
 this.setCharString("");

 }

 public void characters(char buf[], int offset, int len)
 throws SAXException {
 String s = this.getCharString() + new String(buf, offset, len);
 this.setCharString(s);
 BlogLinesXmlToken token = (BlogLinesXmlToken) this.getWhichToken();
 RetrievedBlogEntryImpl item = getItem();
 if (token != null) {
 switch (token) {
 //set item elements base on token
 }
 }
 }
}

The enum BlogLinesXmlToken keeps a list of tokens that we’re interested in. New
blog entries are created by the tag RESULT, which leads to the implementation of the
abstract isBlogEntryToken() method:

 protected boolean isBlogEntryToken(XmlToken t) {
 return (BlogLinesXmlToken.RESULT.compareTo(
 (BlogLinesXmlToken)t) == 0);
 }

The date of the blog entry and the number of items are extracted from the attributes
in the method startElement(), while the other attributes are set in the method
characters().

 That takes care of all the classes we need to implement to integrate Bloglines. The
process of calling Bloglines is similar to that for Technorati. There are three steps
involved in executing the search.

 First, we need to create an instance of the BlogSearcher:

BlogSearcher bs = new BlogLinesBlogSearcherImpl();

Second, we need to set the parameters: login-name, key, and the search query:

Get date

Get total number
of responses

Set other
attributes

139Integrating providers using RSS
 BlogQueryParameter searchQueryParam =
 new BlogLineSearchBlogQueryParameterImpl();
 searchQueryParam.setParameter(
 QueryParameter.APIUSER, "[login-name]");
 searchQueryParam.setParameter(QueryParameter.KEY, "[key]");
 searchQueryParam.setParameter(
 QueryParameter.QUERY, "collective intelligence");

Third, we need to execute the search:

BlogQueryResult searchResult = bs.getRelevantBlogs(searchQueryParam);

The output from this query is similar to the one for Technorati.
 So far, we’ve demonstrated how two different blog-tracking providers, Technorati

and Bloglines, can be integrated using their proprietary APIs. Most blog-tracking
providers provide an RSS 2.0 XML response. Though this RSS response may not be
as rich in content as a provider’s proprietary API, it can still be useful for integrat-
ing providers.

5.6 Integrating providers using RSS
In section 5.1.2, we briefly reviewed RSS and its history. Most providers support the
RSS 2.0 format for responding to a search query. A typical RSS 2.0 XML response was
shown in listing 5.1. The total number of results isn’t available in this XML response.

 Adding a new provider consists of adding three new classes:

■ An instance of the QueryParameter
■ An instance of the BlogSearcher that implements getMethod()
■ An instance of BlogSearchResponseHandler that handles the XML parsing

In this section, we develop each of these classes in a generic manner.

5.6.1 Generalizing the query parameters

Rather than creating a specific instance of these classes for each provider, let’s gener-
alize the approach. Table 5.3 shows the URL used to query MSN and Blogdigger.

You can decompose the query URL into five elements, as shown in table 5.4. These ele-
ments are

■ URL—The provider URL for the query
■ First element —The term used to specify the index of the first element
■ Number items —The term used to specify the number of items
■ Sort —The term used to specify the sort element
■ Format type —The term used to specify the format used

Table 5.3 Query URLs for some blog-tracking providers

Provider URL

MSN http://search.msn.com/results.aspx?q=collective+intelligence&format=rss&first=1&count=2

Blogdigger http://www.blogdigger.com/rss.jsp?sortby=date&q=collective+intelligence&si=1&pp=2

http://search.msn.com/results.aspx?q=collective+intelligence&format=rss&first=1&count=2
http://www.blogdigger.com/rss.jsp?sortby=date&q=collective+intelligence&si=1&pp=2

140 CHAPTER 5 Searching the blogosphere
RSSFeedBlogQueryParameterImpl, whose code is shown in listing 5.21, encapsulates
the parameters shown in table 5.4.

package com.alag.ci.blog.search.impl.rss;
import com.alag.ci.blog.search.impl.BlogQueryParameterImpl;

public class RSSFeedBlogQueryParameterImpl extends BlogQueryParameterImpl {

 public enum RSSProviderURL {
BLOGDIGGER("http://www.blogdigger.com/rss.jsp","si","pp","sortby","",
 QueryType.SEARCH),
MSN ("http://search.msn.com/results.aspx","first","count","",
 "format",QueryType.SEARCH),
 private String url = null;
 private String firstKey = null;
 private String numKey = null;
 private String sortKey = null;
 private String formatKey = null;
 private QueryType queryType = null;

 RSSProviderURL(String url,String firstKey, String numKey,
 String sortKey, String formatKey, QueryType queryType) {
//set the instance variables
 }
//Get methods for the parameters
 }

 private RSSProviderURL rssProviderUrl = null;
 public RSSFeedBlogQueryParameterImpl(RSSProviderURL rssProviderUrl) {
 super(rssProviderUrl.getQueryType(),rssProviderUrl.getUrl());
 this.rssProviderUrl = rssProviderUrl;
 }

 public RSSProviderURL getRSSProviderURL() {
 return this.rssProviderUrl;
 }
}

The enum RSSProviderURL has an enumerated type for each of the providers that
specifies the values for the various parameters. Now we can use this to develop a
generic instance of the blog searcher.

5.6.2 Generalizing the blog searcher

Most of the heavy lifting required to implement RSSFeedBlogQueryParameterImpl
has already been done in the base class, as shown in listing 5.22.

Table 5.4 Decomposing the query parameters across providers

Provider URL
First

element
Number
items

Sort
Format

type

MSN http://search.msn.com/results.aspx first count format

Blogdigger http://www.blogdigger.com/rss.jsp si pp sortby

Listing 5.21 RSSFeedBlogQueryParameterImpl

Parameters for
the providers

Attributes
for enum

Each instance has
RSSProviderURL

http://search.msn.com/results.aspx
http://www.blogdigger.com/rss.jsp

141Integrating providers using RSS
package com.alag.ci.blog.search.impl.rss;

import org.apache.commons.httpclient.HttpMethod;
import org.apache.commons.httpclient.methods.GetMethod;

import com.alag.ci.blog.search.*;
import com.alag.ci.blog.search.impl.rss.RSSFeedBlogQueryParameterImpl.
 ➥RSSProviderURL;

public class RSSFeedBlogSearcherImpl extends BlogSearcherImpl {
 public RSSFeedBlogSearcherImpl() throws BlogSearcherException {
 }

 protected HttpMethod getMethod(BlogQueryParameter param) {
 RSSFeedBlogQueryParameterImpl rssParam =
 (RSSFeedBlogQueryParameterImpl)param;
 RSSProviderURL rssProvider = rssParam.getRSSProviderURL();
 String url = param.getMethodUrl() + "?q=" +
 urlEncode(param.getParameter(QueryParameter.QUERY))+
 "&" + rssProvider.getFirstKey() + "=" +
 param.getParameter(QueryParameter.START_INDEX)+
 "&" + rssProvider.getNumKey() + "=" +
 param.getParameter(QueryParameter.LIMIT);

 if ("".compareTo(rssProvider.getSortKey()) != 0) {
 String sortBy = "date";
 if (param.getParameter(QueryParameter.SORTBY) != null) {
 sortBy = param.getParameter(QueryParameter.SORTBY);
 }
 url += "&" + rssProvider.getSortKey() + "=" + sortBy;
 }
 if ("".compareTo(rssProvider.getFormatKey()) != 0) {
 url += "&" + rssProvider.getFormatKey() + "=rss" ;
 }

 return new GetMethod(url);
 }
}

RSSFeedBlogQueryParameterImpl needs to implement the abstract method get-
Method(). This method uses the parameters specified in RSSFeedBlogQueryParame-
terImpl to create the appropriate query URL.

 The last thing we need to implement is the handler to parse the XML, which is in
RSS 2.0 format.

5.6.3 Building the RSS 2.0 XML parser

Listing 5.23 shows the implementation for RSSFeedResponseHandler, which is the
handle for parsing the RSS 2.0 XML response.

package com.alag.ci.blog.search.impl.rss;

import org.xml.sax.SAXException;

import com.alag.ci.blog.search.XmlToken;

Listing 5.22 RSSFeedBlogQueryParameterImpl

Listing 5.23 RSSFeedResponseHandler

Append sort
term when
appropriate

Append
format
term when
appropriate

142 CHAPTER 5 Searching the blogosphere
import com.alag.ci.blog.search.impl.*;

public class RSSFeedResponseHandler extends BlogSearchResponseHandlerImpl {

 public enum RSSFeedXmlToken implements XmlToken {
 ITEM("item"), TITLE("title"), AUTHOR("author"), LINK("link"),
 DESCRIPTION("description"), PUBDATE("pubDate");

 private String tag = null;

 RSSFeedXmlToken(String tag) {
 this.tag = tag;
 }

 public String getTag() {
 return this.tag;
 }

 protected XmlToken[] getXMLTokens() {
 return RSSFeedXmlToken.values();
 }

 protected boolean isBlogEntryToken(XmlToken t) {
 return (RSSFeedXmlToken.ITEM.compareTo((RSSFeedXmlToken) t) == 0);
 }

 public void characters(char buf[], int offset, int len)
 throws SAXException {
 String s = this.getCharString() + new String(buf, offset, len);
 this.setCharString(s);
 RSSFeedXmlToken token = (RSSFeedXmlToken) this.getWhichToken();
 RetrievedBlogEntryImpl item = getItem();
 if (token != null) {
 switch (token) {
 case LINK: {
 if (item != null) {
 item.setUrl(s);
 }
 break;
 }
 //similar handling of tokens
 }
 }
 }
}

There are six tokens that are handled:

ITEM("item"), TITLE("title"), AUTHOR("author"), LINK("link"),
 DESCRIPTION("description"), PUBDATE("pubDate");

Appropriate elements of the items are also set.
 A typical result using the RSS feed is shown in listing 5.24. Note that the total num-

ber of blog entries isn’t returned.

http://www.blogdigger.com/rss.jsp?q=collective+intelligence&si=1&
 pp=2&sortby=date
Total=null
1 Name: BLOG: Random Thoughts From Last Night

Listing 5.24 Output from Blogdigger query for “collective intelligence”

Tokens that
are handled

Handling of
tokens to set
attribute

URL for query Total number of
results not returned

143Resources
Url: http://baseballcrank.com/archives2/2007/05/blog_random_tho.php
Title: BLOG: Random Thoughts From Last Night
Excerpt: I was switching back and forth last night between the ...
LastUpdateTime: Wed May 16 10:30:45 PDT 2007
Author: Baseball Crank

The code was generated using the test shown in listing 5.25, which is similar to listing 5.17.

 public void runBlogdiggerTest() throws Exception{
 BlogQueryParameter tagQueryParam = new
 RSSFeedBlogQueryParameterImpl(RSSProviderURL.BLOGDIGGER);
 BlogSearcher bs = new RSSFeedBlogSearcherImpl();

 tagQueryParam.setParameter(QueryParameter.START_INDEX, "1");
 tagQueryParam.setParameter(QueryParameter.LIMIT, "1");
 tagQueryParam.setParameter(QueryParameter.QUERY,
 "collective intelligence");
 BlogQueryResult tagResult = bs.getRelevantBlogs(tagQueryParam);
 System.out.println(tagResult);
 }

You can add other providers by decomposing the query URL into the five parameters
specified in table 5.4 and adding an enum value to RSSFeedBlogQueryParameterImpl.
RSSProviderURL.

 In this section, we’ve shown how blog-tracking providers can be added using RSS.
The approach is generic and can be extended to add other blog-tracking providers.
Once you have the URL to the blog, you can download the text of the blog entry, ana-
lyze it to generate its term vector, and compute its similarity to items of interest.

5.7 Summary
It’s helpful to search the blogosphere to obtain relevant information and to monitor
what’s being said about your product and application. There are a number of blog-
tracking providers, companies that track what’s being said in the blogosphere. RSS is
an XML specification that’s widely used for content changes. Most blog-tracking pro-
viders provide an RSS-based API to query.

 In this chapter, we’ve developed a generic framework for searching the blogo-
sphere by integrating blog-tracking providers. Searching the blogosphere involves
four steps: creating the search query, sending it to a blog-tracking provider in a format
the provider can understand, parsing the response from the provider, and lastly, con-
verting it to a standard result format. We’ve demonstrated this process by adding four
providers, two using proprietary APIs and the rest using RSS.

 In the next chapter, we continue with our theme of collecting relevant information
from outside your application by looking at web crawling.

5.8 Resources
 Apache commons.feedparser. http://jakarta.apache.org/commons/sandbox/feedparser/
 “Argos.” https://argos.dev.java.net/

Listing 5.25 Output from Blogdigger query for “collective intelligence”

Specify provider as
Blogdigger

http://jakarta.apache.org/commons/sandbox/feedparser/
https://argos.dev.java.net/

144 CHAPTER 5 Searching the blogosphere
 “Argos: Simple Java Search Engine Wrapper API.” techno.blog(“Dion”). April, 2005. http://
almaer.com/blog/argos-simple-java-search-engine-wrapper-api

 Atom. http://atomenabled.org/
 Atom Publishing Format and Protocol (atompub). http://www.ietf.org/html.charters/

atompub-charter.html
 Blog Search Engine. http://www.blogsearchengine.com/
 Blogdigger. http://www.blogdigger.com/rss.jsp
 Blogger Data API. http://code.google.com/apis/blogger/gdata.html
 Bloglines API Documentation. http://www.bloglines.com/services/api/
 BlogPulse API FAQ. http://www.blogpulse.com/about.html#showcase_3
 Brown, Larry, and Marty Hall. XML Processing with Java. 2002. Prentice Hill. http://

www.phptr.com/articles/article.asp?p=26351&seqNum=4&rl=1
 Caplan, Jeremy. “Searchlight for the Blogosphere.” Time. Dec. 3, 2006. http://www.time.com/

time/globalbusiness/article/0,9171,1565540,00.html
 DateFormat and SimpleDateFormat Examples. http://javatechniques.com/public/java/docs/

basics/dateformat-examples.html
 Dmoz open directory. http://dmoz.org/Computers/Internet/On_the_Web/Weblogs/

Search_Engines/
 Fagan Finder, Blogs and RSS Search Engines. http://www.faganfinder.com/blogs/
 Full list of ping services to go. http://www.onlinemoneytip.com/blogging/rss-ping-list/
 Google Blog Search. http://www.google.com/help/about_blogsearch.html
 HttpClient Tutorial. http://jakarta.apache.org/commons/httpclient/tutorial.html
 Icerocket.com. http://www.icerocket.com/
 Jakarta Commons HttpClient. http://hc.apache.org/httpclient-3.x/
 “Java API for XML Processing (JAXP) Sources.” Sun Microsystems Inc. https://jaxp-sources.

dev.java.net/
 Johnson, Dave. RSS and Atom in Action. 2006. Manning Publications.
 MSN Live Search. http://search.msn.com/results.aspx
 RSS, Wikipedia. http://en.wikipedia.org/wiki/RSS_%28file_format%29
 RSS 2.0 Specification. RSS Advisory Board. http://www.rssboard.org/rss-specification
 RSS 2.0 Specification. http://blogs.law.harvard.edu/tech/rss
 RSS Tutorial for Content Publishers and Webmasters. http://www.mnot.net/rss/tutorial/
 Sayer, Robert. “Atom: The Standard in Syndication.” IEEE Internet Computing, vol. 9, no. 2, 2005,

pp. 71-75.
 SAX API Javadoc. http://www.saxproject.org/apidoc/overview-summary.html
 SimpleDateFormat. http://java.sun.com/j2se/1.4.2/docs/api/java/text/

SimpleDateFormat.html
 Tailrank. http://tailrank.com/code.php
 Technorati API Documentation. http://www.technorati.com/developers/api/
 “Time’s 50 Best Websites.”
 Time. http://www.time.com/time/techtime/200406/news.html
 UrlEncoder. http://java.sun.com/j2se/1.4.2/docs/api/java/net/URLEncoder.html
 Winer, Dave. “RSS History.” April, 2004. http://blogs.law.harvard.edu/tech/rssVersionHistory
 “Xerces2 Java Parser Readme.” Apache XML. http://xerces.apache.org/xerces2-j/

http://almaer.com/blog/argos-simple-java-search-engine-wrapper-api
http://almaer.com/blog/argos-simple-java-search-engine-wrapper-api
http://atomenabled.org/
http://www.ietf.org/html.charters/atompub-charter.html
http://www.ietf.org/html.charters/atompub-charter.html
http://www.blogsearchengine.com/
http://www.blogdigger.com/rss.jsp
http://code.google.com/apis/blogger/gdata.html
http://www.bloglines.com/services/api/
http://www.blogpulse.com/about.html#showcase_3
http://www.phptr.com/articles/article.asp?p=26351&seqNum=4&rl=1
http://www.phptr.com/articles/article.asp?p=26351&seqNum=4&rl=1
http://www.time.com/time/globalbusiness/article/0,9171,1565540,00.html
http://www.time.com/time/globalbusiness/article/0,9171,1565540,00.html
http://javatechniques.com/public/java/docs/basics/dateformat-examples.html
http://javatechniques.com/public/java/docs/basics/dateformat-examples.html
http://dmoz.org/Computers/Internet/On_the_Web/Weblogs/Search_Engines/
http://dmoz.org/Computers/Internet/On_the_Web/Weblogs/Search_Engines/
http://www.faganfinder.com/blogs/
http://www.onlinemoneytip.com/blogging/rss-ping-list/
http://www.google.com/help/about_blogsearch.html
http://jakarta.apache.org/commons/httpclient/tutorial.html
http://www.icerocket.com/
http://hc.apache.org/httpclient-3.x/
https://jaxp-sources.dev.java.net/
https://jaxp-sources.dev.java.net/
http://search.msn.com/results.aspx
http://en.wikipedia.org/wiki/RSS_%28file_format%29
http://www.rssboard.org/rss-specification
http://blogs.law.harvard.edu/tech/rss
http://www.mnot.net/rss/tutorial/
http://www.saxproject.org/apidoc/overview-summary.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://tailrank.com/code.php
http://www.technorati.com/developers/api/
http://www.time.com/time/techtime/200406/news.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URLEncoder.html
http://blogs.law.harvard.edu/tech/rssVersionHistory
http://xerces.apache.org/xerces2-j/

Intelligent web crawling
No one knows the exact number of web pages on the Internet. But we do know that
the World Wide Web is

■ Huge, with billions of web pages
■ Dynamic, with pages being constantly added, removed, or updated
■ Growing rapidly

Given the huge amount of information available on the Internet, how does one
find information of interest?

 In this chapter, we continue our theme of gathering information from outside
one’s application. You’ll be introduced to the field of intelligent web crawling to
retrieve relevant information. Search engines crawl the web periodically to index
available content. You may be interested in crawling the web to harvest information

This chapter covers
■ A brief overview of web crawling and intelligent crawling
■ A step-by-step implementation of a web crawler
■ Crawling with Nutch
■ Scalable web crawling
145

146 CHAPTER 6 Intelligent web crawling
from external sites, which can then be used in your application. Search engines such as
Google and Yahoo! constantly crawl the web to gather data for their search results.

In late July 2008, Google announced that they had detected more than a
trillion unique URLs on the web; with the internet growing by several billion
individual pages every day. Of course, not all the content has been indexed
by Google, but a large portion has. To get a sense of the number of pages
indexed by Google it is useful to look at the number of pages indexed by
Google for a site—type site:website, for example, site:facebook.com, to
search for the pages indexed by Google for Facebook (this number inci-
dentally was more than 76 million pages as of July 2008). Other providers,
such as Alexa, Compete.com, and Quantcast also provide useful data on the
kinds of searches carried out on various sites.

This chapter is organized in three sections:

■ First, we look at the field of web crawling, how it can be used in your applica-
tion, the details of the crawling process, how the process can be made intelli-
gent, how to access pages that aren’t retrievable using traditional methods, and
the available public domain crawlers that you can use.

■ Second, to understand the basics of intelligent (focused) crawling, we imple-
ment a simple web crawler that highlights the key concepts related to web
crawling.

■ Third, we use Apache Nutch, an open source Java-based scalable crawler. We
also discuss making Nutch distributed and scalable, using concepts known as
Hadoop and MapReduce.

6.1 Introducing web crawling
Web crawling is the automated process of visiting web pages with the aim of retrieving
content. The content being extracted could be in many forms: text, images, or videos.
A web crawler is a program that systematically visits web pages, retrieves content,
extracts URLs to other relevant links, and then in turn visits those links if allowed. Web
crawlers are also commonly known as web spiders, bots, or automated indexers.

 As we’ll see later in this chapter, it’s easy to write a simple web crawler. But building
a crawler that’s sophisticated enough to efficiently crawl the complete web (or parts of
it that can be crawled) is a whole different ball game. We discuss these challenges
throughout this chapter.

 In this section, we look at how crawling the web may be useful to you, the basics of
web crawling, how crawling can be made focused or intelligent, how invisible content
can be made available, and some of the available open source web crawlers.

6.1.1 Why crawl the Web?

The primary goal of web crawling is to collect data from external sites. Following are
some of the many ways web crawling is typically used:

HOW BIG IS
THE WEB?

147Introducing web crawling
■ Content aggregation and indexing external content —Search engines build a catalog
of content available on the web by periodically crawling the web. They then
allow their users to search for relevant content using the data retrieved. You can
also aggregate external data that may be relevant to your application and pres-
ent hyperlinks to those pages from within your application.1

■ Searching for specific information —Focused crawling deals with crawling the web
specifically looking for relevant information. In essence, the crawler visits a frac-
tion of the total pages available by visiting pages that show promise. We also
refer to this as intelligent crawling.

■ Triggering events —Based on your domain, it may be helpful to crawl a set
of web sites in search of relevant information that can be used as triggers
or events in your application. For example, if your application is in the real
estate domain, where you provide a valuation for a house, it may be helpful
to crawl public domain sites that post information about recent sales. A
house sale could be an event in your financial model for the price of homes
in a neighborhood.

■ Detecting broken links —Since a web crawler is good at visiting a page, extracting
hyperlinks, and then visiting those pages, you can use a web crawler to detect
whether you have any broken links in your application.

■ Searching for copyright infringement —If you have copyrighted content, you can use
intelligent web crawling to detect sites that are inappropriately using your content.

Next, let’s look at the process of crawling the web used by web crawlers.

6.1.2 The crawling process

The basic process of web crawling is fairly straightforward, as shown in figure 6.1.
Later, in section 6.2, we implement a simple web crawler using the algorithm outlined
in figure 6.1. The basic steps involved in web crawling are

1 Seeding the web crawler —The web crawler is seeded with a set of URLs to be vis-
ited. Place these URLs in a queue data structure. The crawler queries the queue
to get the next URL that it needs to crawl.

2 Checking for exit criteria —As long as the criteria for the crawler to continue crawl-
ing are met, the crawler retrieves the next URL to be visited. The exit criteria for
a crawler could be based on one of many conditions—when the number of
pages retrieved or visited reaches a certain threshold, how long the crawler has
run, when there are no more available URLs to visit, and so on.

3 Get the next URL to be visited —There are some sites that don’t allow crawlers to
visit certain pages. Sites typically give permissions to crawlers to visit a set of
pages in a file called robots.txt. The next step is to get the next URL that the
crawler is allowed to visit.

1 It may not be appropriate to show the content within your application if it is copyrighted.

148 CHAPTER 6 Intelligent web crawling
4 Retrieve content —The crawler visits the URL and retrieves the content. Since you
want the crawling process to be efficient—to avoid duplication—the URL visited
is added to the list of URLs visited.

5 Is the retrieved content relevant?—This step is optional and is used when imple-
menting focused crawling. Here, the retrieved content is checked against a
model to see if the content is relevant to what we’re searching for. If it is, then
the content is saved locally.

6 Extract URLs —When the content is of interest, the text in the content is parsed
for hyperlinks. Hyperlinks that haven’t been visited are then placed in the
queue of URLs.

7 Inject delay —If the crawling process is too fast or if multiple threads are being
used, it can sometimes overwhelm the site. Sites protect themselves by blocking
the IP addresses of misbehaving crawlers. You may want to optionally inject a
delay between subsequent hits to a site.

This algorithm carries out its search using breadth-first search (BFS) —the roots of
extracted URLs are visited first before going deep and visiting the children. Given that
there are costs associated with the time to crawl, the network bandwidth used, and the
number of machines used in the crawl, sophisticated methods have been developed to
determine which URL should be visited next. These methods to estimate the potential
quality of a URL include using historic information from previous crawls to determine
a URL’s weight, using the number of pages connecting to the URL (also known as author-
ity) and the number of outward links, and analyzing the graph of connections on the
site. Of course, though understanding these basic analysis algorithms is conceptually
simple, the practical details of implementing them are complex and usually proprietary.

Add
To

Queue
Of

URLs

Seed
URLs

Continue
Crawling

?

Get next URL

Get Content

Save Content

Extract URLs

Is
Content

Relevant?

End No

No

Inject Delay

Yes

Yes

Figure 6.1 The basic
process of web crawling

149Introducing web crawling
Web crawlers typically work in combination with a search library, which is used to index
and search the content retrieved. For example, Nutch, which we use in section 6.3,
uses Lucene, a Java-based open source search engine library, which we also use later in
this book.

 Given the dynamic nature of the Web, with pages being constantly added, modi-
fied, or deleted, crawling is performed periodically to keep the pages fresh. A site may
have a number of mirror sites, and smart crawlers can detect these sites and avoid
duplication by downloading from the fastest or freshest server.
A crawler can face a number of challenges during the crawl process, one of them being
a spider trap. A spider trap could be created unintentionally or intentionally to guard a
site against spam crawlers. Common techniques used to create spider traps include cre-
ating an infinitely deep directory structure and creating an infinite number of dynam-
ically generated pages. Most crawlers stay with five levels of URL hierarchy.

 Spammers use a variety of methods to mislead crawlers and boost their search
engine rankings. These techniques include

■ Doorway pages —Pages that are optimized for a single keyword, which then redi-
rects to the real target page.

■ Keyword spamming —Location and word frequency are two commonly used met-
rics used by text analysis algorithms. Spammers add misleading meta-keywords,
repeat words excessively, or add hidden text.

■ Link spamming —Some sites have numerous domains that point or redirect to a
target page.

■ Cloaking —Some sites detect when a request is from a web crawler and may serve
fake spam content.

With this general overview of the crawling process, let’s next focus on step 5 of the
crawling process—focused crawling, where we want to focus the crawling process to
get only items of interest.

6.1.3 Intelligent crawling and focused crawling

Given the sheer size of the web and the time and cost associated, crawling the com-
plete Web can be daunting and potentially infeasible. Many times you may be inter-
ested in gathering information relevant to a particular domain or a topic; this is where
focused crawling, also known as topical crawling, comes into play. Focused crawling is
based on the simple principle that the more relevant a page to a topic of interest, the
higher the probability that the linked pages contain relevant content. Therefore, it’s
advantageous to first explore these linked pages. A simple way to compute the rele-
vancy of a page to a topic of interest is to match on keywords. The use of similarity
computation between two term vectors using the term-frequency and inverse-docu-
ment-frequency (TF-IDF) computation is a generalization of this idea.

 Charkrabarti formally introduced focused crawling in 1999. In focused crawling,
one first builds a model, also known as a classifier, that’s trained to predict how rele-
vant a piece of content is to the topic being searched. If you’re searching for content

150 CHAPTER 6 Intelligent web crawling
that’s similar to a set of documents, a simple approach is to create a composite term-
vector representation, similar to CompositeContentTypes, which we looked at in sec-
tion 4.4.1, and then compute the similarity between the retrieved content and this
composite representation. Of course, there are a variety of approaches that can be
used to build predictive models, which we discuss in part 2 of this book.

 Assume that we’ve built a classifier that can emit a number between 0 and 1 to pre-
dict the relevancy of a piece of content, such that the higher the number, the higher
the probability that the item is relevant to our topic. Content that has a value above a
certain threshold is accepted, and hyperlinks from these pages are added to the pool
of URLs to be visited with the weight of the relevancy of the parent. The URLs in the
URL queue are sorted by relevancy, such that the URL with the highest predicted rele-
vancy is selected.

 A metric commonly used to measure the effectiveness of a crawler is its harvest rate:
the proportion of pages retrieved that are relevant to the topic of interest for the
crawler. Typically, a number of heuristics depending on the domain and the item
being searched for are used to improve a crawler’s harvest rate.

 In the sixth step of the crawling process, we discussed how the crawler finds addi-
tional links by parsing through the content. However, not all content is accessible
through this process. Next, let’s look at how this content can be made available to the
web crawler.

6.1.4 Deep crawling

Deep or invisible web pages are pages that can’t be reached by following the links on a
page. This is especially true when a site uses AJAX and crawlers can’t navigate to the
content. One way to solve this is to use the sitemaps protocol, a URL inclusion proto-
col. Sitemaps work together with the robots.txt specification, which is a URL exclusion
protocol. The sitemap protocol has wide adoption, including support from AOL,
Microsoft, and Yahoo!

 Sitemaps are XML documents that tell web crawlers which URLs are available for
crawling. They also contain additional information about the URLs, such as how often
they change, when they were last updated, and the relative importance of a URL with
respect to other URLs on the site. For more details on the sitemaps specification, refer
to the official site at http://www.sitemaps.org/protocol.php and the Google sitemap site
at https://www.google.com/webmasters/tools/docs/en/protocol.html. Since there is
a limit of 50,000 URLs and up to 10MB for a sitemap file, you can also use a sitemap index
specifying the locations of your sitemap files. You can have up to 1,000 sitemaps, and
can specify the location of your sitemap in your robots.txt file, which we look at in sec-
tion 6.2.2.

 Leveraging search engine optimization and the use of sitemaps is one of the cheap-
est ways of marketing your content. When done correctly, your application web page
will show up high in the search results of search engines such as Google and Yahoo!,
and this could generate relevant traffic to your site. To show up high on results from
search engines such as Google, you also need to increase the authority—sites linking to

http://www.sitemaps.org/protocol.php
https://www.google.com/webmasters/tools/docs/en/protocol.html

151Introducing web crawling
your site—of your domain. For more information on making your site Google crawler-
friendly, check out the Google Webmaster site: https://www.google.com/webmasters/
tools/docs/en/about.html. Using the Google Webmaster tools, you can see informa-
tion about what content has been indexed by the Google crawler, Googlebot; when it
was last indexed; pages that the crawler had problems with; and so forth. As shown in
figure 6.2, you can also submit a link to your sitemap file through the Google Webmas-
ter tools and check for any errors in the XML files.

It’s also helpful to list your site with the Open Directory Project (http://www.
dmoz.org/), which is used by a number of search crawlers and will help you increase
the page rank for your site.

6.1.5 Available crawlers

A number of open source web crawlers written in Java are available. Refer to http://www.
manageability.org/blog/stuff/open-source-web-crawlers-java/view for a list of available
open source crawlers, with Nutch2 and Heritrix3 perhaps being the two most popular.

 Heritrix is the Internet Archive’s open source, extensible, web-scale web crawler proj-
ect. Nutch was built by Doug Cutting in an effort to provide a free and open web search
engine. It’s built on top of Lucene,4 which we use in chapter 11 when we discuss intel-
ligent search, and has shown good scalability. Nutch has been designed to scale to over
1 billion pages, and a demo index of more than 100 million documents was created in
2003. Both Nutch and Lucene are Apache projects and carry the Apache license.

2 http://lucene.apache.org/nutch/
3 http://crawler.archive.org/
4 Lucene is an open source software library for full-text search.

Figure 6.2 Submitting your site’s sitemap using Google Webmaster tools

http://www.dmoz.org/
http://www.dmoz.org/
http://www.manageability.org/blog/stuff/open-source-web-crawlers-java/view
http://www.manageability.org/blog/stuff/open-source-web-crawlers-java/view
http://lucene.apache.org/nutch/
http://crawler.archive.org/
https://www.google.com/webmasters/tools/docs/en/about.html
https://www.google.com/webmasters/tools/docs/en/about.html

152 CHAPTER 6 Intelligent web crawling
 Later, in section 6.3, we use Nutch to crawl the web. Before we use an out-of-the-box
crawler such as Nutch, it’s useful to go through the process of building a web crawler our-
selves—it’ll help us better appreciate the complexities associated with crawling, espe-
cially as we try to make it scale.

 Now that we know the basics of web crawling, let’s systematically build a simple web
crawler. This will give us useful insight into the inner workings of web crawlers and
some of the issues related to web crawling.

6.2 Building an intelligent crawler step by step
In this section, we build a simple focused web crawler that follows hyperlinks to gather
URLs of interest. To make the crawl focused, we use a regular expression matcher as the
model for computing the relevance of content visited by the crawler. I’ve found this
crawler to be useful in retrieving content of interest when I’m researching a particular
topic. In our example, we retrieve content related to “collective intelligence” and seed
the crawler by pointing it to the page on Wikipedia on collective intelligence.

6.2.1 Implementing the core algorithm

To implement our crawler, we build two classes:

1 NaiveCrawler implements the crawling process.
2 CrawlerUrl encapsulates the URL visited by the crawler.

Let’s begin by looking at listing 6.1, which shows the crawl() method implemented
by the crawler. This method follows the steps outlined in figure 6.1.

public void crawl() throws Exception {
 while (continueCrawling()) {
 CrawlerUrl url = getNextUrl();
 if (url != null) {
 printCrawlInfo();
 String content = getContent(url);
 if (isContentRelevant(content, regexpSearchPattern)) {
 saveContent(url, content);
 Collection<String> urlStrings =
 extractUrls(content, url);
 addUrlsToUrlQueue(url, urlStrings);
 } else {
 System.out.println(url + " is not relevant ignoring ...");
 }
 Thread.sleep(this.delayBetweenUrls);
 }
 }
 closeOutputStream();
 }

The crawler consists of eight steps:

continueCrawling(): checks to make sure that the crawl exit criteria aren’t met

getNextUrl(): gets the next URL to be visited

Listing 6.1 The crawl() method in the NaiveCrawler class

B
C

D
E

F

G
H

I

B

C

153Building an intelligent crawler step by step
getContent(url): retrieves the content associated with the URL

isContentRelevant(content, this.regexpSearchPattern): checks to see if the
retrieved content is of interest

saveContent(url, content): saves the content if the URL is of interest

extractUrls(content, url): extracts URLs by parsing the content

addUrlsToUrlQueue(url, urlStrings): adds the extracted URLs to the URL queue

Thread.sleep(this.delayBetweenUrls): injects a delay before processing the next
URL

We visit each of these steps in the next few sections. Before we go too far, let’s look at
the constructor for the NaiveCrawler, which is shown in listing 6.2.

package com.alag.ci.webcrawler;

import java.io.*;
import java.net.URL;
import java.util.*;
import java.util.regex.*;

import org.apache.commons.httpclient.*;
import org.apache.commons.httpclient.methods.GetMethod;
import org.apache.commons.httpclient.params.HttpMethodParams;

public class NaiveCrawler {
 private static final String USER_AGENT = "User-agent:";
 private static final String DISALLOW = "Disallow:";
 public static final String REGEXP_HTTP = "";
 public static final String REGEXP_RELATIVE = "";
 private int maxNumberUrls;
 private long delayBetweenUrls;
 private int maxDepth;
 private Pattern regexpSearchPattern;
 private Pattern httpRegexp;
 private Pattern relativeRegexp;
 private Map<String, CrawlerUrl> visitedUrls = null;
 private Map<String, Collection<String>> sitePermissions = null;
 private Queue<CrawlerUrl> urlQueue = null;
 private BufferedWriter crawlOutput = null;
 private BufferedWriter crawlStatistics = null;
 private int numberItemsSaved = 0;

 public NaiveCrawler(Queue<CrawlerUrl> urlQueue, int maxNumberUrls,
 int maxDepth, long delayBetweenUrls, String regexpSearchPattern)
 throws Exception {
 this.urlQueue =

urlQueue;
 this.maxNumberUrls = maxNumberUrls;
 this.delayBetweenUrls = delayBetweenUrls;
 this.maxDepth = maxDepth;
 this.regexpSearchPattern = Pattern.compile(regexpSearchPattern);
 this.visitedUrls = new HashMap<String, CrawlerUrl>();

Listing 6.2 The constructor for NaiveCrawler

D
E

F

G

H

I

Regular expression
pattern to focus crawling

Regular
expression
to extract
out URLs

Map keeps track
of URLs visited

Output URLs
stored in two files

Map keeps track of
site permissions

Extract next
URL to visit

154 CHAPTER 6 Intelligent web crawling
 this.sitePermissions = new HashMap<String, Collection<String>>();
 this.httpRegexp = Pattern.compile(REGEXP_HTTP);
 this.relativeRegexp = Pattern.compile(REGEXP_RELATIVE);
 crawlOutput = new BufferedWriter(new FileWriter("crawl.txt"));
 crawlStatistics = new BufferedWriter(new FileWriter(
 "crawlStatistics.txt"));
 }

The crawler is seeded with an initial queue of CrawlerUrls, the maximum number of
URLs to be visited, the maximum depth to be visited, the delay to be injected between
visiting URLs, and a regular expression to guide the crawling process. This is shown in
the constructor:

public NaiveCrawler(Queue<CrawlerUrl> urlQueue, int maxNumberUrls,
int maxDepth, long delayBetweenUrls, String regexpSearchPattern)
 throws Exception

At this point it’s also helpful to look at the code for CrawlerUrl, as shown in listing 6.3.

package com.alag.ci.webcrawler;

import java.net.MalformedURLException;
import java.net.URL;

public class CrawlerUrl {
 private int depth = 0;
 private String urlString = null;
 private URL url = null;
 private boolean isAllowedToVisit;
 private boolean isCheckedForPermission = false;
 private boolean isVisited = false;

 public CrawlerUrl(String urlString, int depth) {
 this.depth = depth;
 this.urlString = urlString;
 computeURL();
 }

 private void computeURL() {
 try {
 url = new URL(urlString);
 } catch (MalformedURLException e) {
 // something is wrong
 }
 }

 public URL getURL() {
 return this.url;
 }

 public int getDepth() {
 return this.depth;
 }

 public boolean isAllowedToVisit() {

Listing 6.3 The code for CrawlerUrl

Depth
of URL String value

for URL
Determines if
crawler is
allowed to
visit this URL

Determines
if crawler
has visited
this URL

155Building an intelligent crawler step by step
 return isAllowedToVisit;
 }

 public void setAllowedToVisit(boolean isAllowedToVisit) {
 this.isAllowedToVisit = isAllowedToVisit;
 this.isCheckedForPermission = true;
 }

 public boolean isCheckedForPermission() {
 return isCheckedForPermission;
 }

 public boolean isVisited() {
 return isVisited;
 }

 public void setIsVisited() {
 this.isVisited = true;
 }

 public String getUrlString() {
 return this.urlString;
 }

 @Override
 public String toString() {
 return this.urlString + " [depth=" + depth + " visit="
 + this.isAllowedToVisit + " check="
 + this.isCheckedForPermission + "]";
 }

 @Override
 public int hashCode() {
 return this.urlString.hashCode();
 }

 @Override
 public boolean equals(Object obj) {
 return obj.hashCode() == this.hashCode();
 }

}

The CrawlerUrl class represents an instance of the URL that’s visited by the crawler. It
has utility methods to mark whether the URL has been visited and whether the site has
given permission to crawl the URL.

 Next, let’s look in more detail at how the crawler gets the next URL for the crawl,
which is shown in listing 6.4.

 private boolean continueCrawling() {
 return ((!urlQueue.isEmpty()) && (getNumberOfUrlsVisited() <
 this.maxNumberUrls));
 }

 private CrawlerUrl getNextUrl() {
 CrawlerUrl nextUrl = null;

Listing 6.4 Getting the next url for the crawler

Next
unvisited
URL in queue

 Run till out
of URLs or

exceed
threshold

156 CHAPTER 6 Intelligent web crawling
 while ((nextUrl == null) && (!urlQueue.isEmpty())) {
 CrawlerUrl crawlerUrl = this.urlQueue.remove();
 if (doWeHavePermissionToVisit(crawlerUrl)
 && (!isUrlAlreadyVisited(crawlerUrl))
 && isDepthAcceptable(crawlerUrl)) {
 nextUrl = crawlerUrl;
 }
 }
 return nextUrl;
 }

 private void printCrawlInfo() throws Exception {
 StringBuilder sb = new StringBuilder();
 sb.append("Queue length = ").append(this.urlQueue.size()).append(
 " visited urls=").append(getNumberOfUrlsVisited()).append(
 " site permissions=").append(this.sitePermissions.size());
 crawlStatistics.append("" + getNumberOfUrlsVisited()).append(
 "," + numberItemsSaved).append("," + this.urlQueue.size())
 .append("," + this.sitePermissions.size() + "\n");
 crawlStatistics.flush();
 System.out.println(sb.toString());
 }

 private int getNumberOfUrlsVisited() {
 return this.visitedUrls.size();
 }

 private void closeOutputStream() throws Exception {
 crawlOutput.flush();
 crawlOutput.close();
 crawlStatistics.flush();
 crawlStatistics.close();
 }

 private boolean isDepthAcceptable(CrawlerUrl crawlerUrl) {
 return crawlerUrl.getDepth() <= this.maxDepth;
 }

 private boolean isUrlAlreadyVisited(CrawlerUrl crawlerUrl) {
 if ((crawlerUrl.isVisited())
 || (this.visitedUrls.containsKey(
 crawlerUrl.getUrlString()))) {
 return true;
 }
 return false;
 }

The method continueCrawling checks whether the crawler should stop crawling.
Crawling stops when we run out of URLs to crawl or we’ve visited the maximum num-
ber of specified URLs. The method getNextUrl retrieves the next available URL that
hasn’t been visited, has acceptable depth, and that we’re allowed to visit. To find out if
we’re allowed to visit a particular URL, we need to look at the robots.txt file.

6.2.2 Being polite: following the robots.txt file

A site can disallow web crawlers from accessing certain parts of the site by creating a
robots.txt file and making it available via HTTP at the local URL /robots.txt. The

Prints details
of crawler run

Returns number
of URLs visited

Closes all
output streams

Checks
depth
of URL

 Checks if
URL has

been visited

157Building an intelligent crawler step by step
robots.txt5 specification was created in 1994. There’s no agency that enforces the per-
missions provided by the site to the web crawlers, but it’s considered good manners to
respect the permissions provided by the site to the crawlers. Web crawlers that don’t
follow the guidelines risk having their IP blocked.

 Let’s look at a sample robots.txt file that I’ve taken from the Manning web site. It’s
shown in listing 6.5. This will help us understand the structure and the terms used to
allow and disallow access to certain URLs.

User-agent: *
Disallow: /_mm/
Disallow: /_notes/
Disallow: /_baks/
Disallow: /MMWIP/

User-agent: googlebot
Disallow: *.csi

Note the following about the permissions set in this robots.txt file:
 User-agent: * implies that this set of rules is valid for all web crawlers.

Disallow: /_mm/
Disallow: /_notes/
Disallow: /_baks/
Disallow: /MMWIP/

This specifies that no robots are allowed to visit content in any of the following direc-
tories: /_mm/, /_notes/, /_baks/, /MMWIP/.

 The next specification, User-agent: googlebot, is applicable for the web crawler
googlebot, which is forbidden to visit any pages that end with .csi. The specification
requires only one directory per Disallow: line.

 If for whatever reason you don’t want any crawlers visiting your site, simply create
the following robots.txt file:

 User-agent: *
 Disallow: /

Next, let’s look at listing 6.6, which contains the methods to parse through the
robots.txt file at a site to see if the crawler is allowed to visit the specified URL.

 public boolean doWeHavePermissionToVisit(CrawlerUrl crawlerUrl) {
 if (crawlerUrl == null) {
 return false;
 }
 if (!crawlerUrl.isCheckedForPermission()) {
 crawlerUrl
 .setAllowedToVisit(computePermissionForVisiting(crawlerUrl));
 }

5 www.robotstxt.org/wc/norobots.html

Listing 6.5 Example robots.txt file at http://www.manning.com/robots.txt

Listing 6.6 Parsing the robots.txt file to check for permissions

www.robotstxt.org/wc/norobots.html

158 CHAPTER 6 Intelligent web crawling
 return crawlerUrl.isAllowedToVisit();
 }

 private boolean computePermissionForVisiting(CrawlerUrl crawlerUrl) {
 URL url = crawlerUrl.getURL();
 boolean retValue = (url != null);
 if (retValue) {
 String host = url.getHost();
 Collection<String> disallowedPaths =
 this.sitePermissions.get(host);
 if (disallowedPaths == null) {
 disallowedPaths = parseRobotsTxtFileToGetDisallowedPaths(
 host);
 }
 String path = url.getPath();
 for (String disallowedPath : disallowedPaths) {
 if (path.contains(disallowedPath)) {
 retValue = false;
 }
 }
 }
 return retValue;
 }

 private Collection<String> parseRobotsTxtFileToGetDisallowedPaths(
 String host) {
 String robotFilePath = getContent(
 "http://" + host + "/robots.txt");
 Collection<String> disallowedPaths = new ArrayList<String>();
 if (robotFilePath != null) {
 Pattern p = Pattern.compile(USER_AGENT);
 String[] permissionSets = p.split(robotFilePath);
 String permissionString = "";
 for (String permission : permissionSets) {
 if (permission.trim().startsWith("*")) {
 permissionString = permission.substring(1);
 }
 }
 p = Pattern.compile(DISALLOW);
 String[] items = p.split(permissionString);
 for (String s : items) {
 disallowedPaths.add(s.trim());
 }
 }
 this.sitePermissions.put(host, disallowedPaths);
 return disallowedPaths;
 }

Once the robots.txt file has been parsed for a site, the permissions are cached in a
local variable disallowedPaths. This ensures that we don’t waste resources hitting the
site unnecessarily.

 The location of the sitemap can be specified in the robots.txt file by adding the fol-
lowing line (see section 6.1.4):

Sitemap: <sitemap location>

Next, let’s look at how our crawler retrieves content.

Site permissions
cached in local
variable

Parses content
of robots.txt

Checks for
disallowed path

Pattern
matching
to extract
disallowed
paths

Gets robots.txt file

159Building an intelligent crawler step by step
6.2.3 Retrieving the content

As in the previous chapter, we retrieve content from a URL by using the org.apache.
commons.httpclient package, as shown in listing 6.7.

 private String getContent(String urlString) {
 return getContent(new CrawlerUrl(urlString, 0));
 }

 private String getContent(CrawlerUrl url) {
 HttpClient client = new HttpClient();
 GetMethod method = new GetMethod(url.getUrlString());
 method.getParams().setParameter(HttpMethodParams.RETRY_HANDLER,
 new DefaultHttpMethodRetryHandler(3, false));
 String text = null;
 try {
 int statusCode = client.executeMethod(method);
 if (statusCode == HttpStatus.SC_OK) {
 text = readContentsFromStream(new InputStreamReader(method
 .getResponseBodyAsStream(),
 method.getResponseCharSet()));
 }
 } catch (Throwable t) {
 System.out.println(t.toString());
 t.printStackTrace();
 } finally {
 method.releaseConnection();
 }
 markUrlAsVisited(url);
 return text;
 }

 private static String readContentsFromStream(Reader input)
 throws IOException {
 BufferedReader bufferedReader = null;
 if (input instanceof BufferedReader) {
 bufferedReader = (BufferedReader) input;
 } else {
 bufferedReader = new BufferedReader(input);
 }
 StringBuilder sb = new StringBuilder();
 char[] buffer = new char[4 * 1024];
 int charsRead;
 while ((charsRead = bufferedReader.read(buffer)) != -1) {
 sb.append(buffer, 0, charsRead);
 }
 return sb.toString();
 }

 private void markUrlAsVisited(CrawlerUrl url) {
 this.visitedUrls.put(url.getUrlString(), url);
 url.setIsVisited();
 }

The method getContent retrieves the content for the specified URL using the Http-
Client and GetMethod objects. The method extracts the content from the visited URL

Listing 6.7 Retrieving content from URLs

Retrieves
content
from URL

Used as
recommended
by package

Converts
stream to String

representation

Marked as visited
when content is
retrieved

160 CHAPTER 6 Intelligent web crawling
by using the method readContentsFromStream. Once we have the content, we need
to go through it to extract additional URLs that are within the content.

6.2.4 Extracting URLs

We extract two types of hyperlinked URLs.
 First are hyperlinks with an absolute path, for example:

<a href=http://www.bath.ac.uk/carpp/davidskrbina/chap8.pdf
 class="external autonumber">[1]

For this, we use the simple regular expression . This regu-
lar expression looks for strings starting with <a href=\"http://" and ending with the
matching \">. Note the \ after href=, which is used to escape the " character in Java.

 Second are relative paths, an example of which is

 Systems intelligence

For this, we use the simple regular expression . The code to
extract these two kinds of URLs is shown in listing 6.8.

 public List<String> extractUrls(String text, CrawlerUrl crawlerUrl) {
 Map<String, String> urlMap = new HashMap<String, String>();
 extractHttpUrls(urlMap, text);
 extractRelativeUrls(urlMap, text, crawlerUrl);
 return new ArrayList<String>(urlMap.keySet());
 }

 private void extractHttpUrls(Map<String, String> urlMap, String text) {
 Matcher m = httpRegexp.matcher(text);
 while (m.find()) {
 String url = m.group();
 String[] terms = url.split("a href=\"");
 for (String term : terms) {
 if (term.startsWith("http")) {
 int index = term.indexOf("\"");
 if (index > 0) {
 term = term.substring(0, index);
 }
 urlMap.put(term, term);
 }
 }
 }
 }

 private void extractRelativeUrls(Map<String, String> urlMap,
 String text, CrawlerUrl crawlerUrl) {
 Matcher m = relativeRegexp.matcher(text);
 URL textURL = crawlerUrl.getURL();
 String host = textURL.getHost();
 while (m.find()) {
 String url = m.group();
 String[] terms = url.split("a href=\"");

Listing 6.8 Extracting the URLs

Extracts
HTTP-based

 absolute URLs

Extracts
relative
URLs

161Building an intelligent crawler step by step
 for (String term : terms) {
 if (term.startsWith("/")) {
 int index = term.indexOf("\"");
 if (index > 0) {
 term = term.substring(0, index);
 }
 String s = "http://" + host + term;
 urlMap.put(s, s);
 }
 }
 }

 }

 private void addUrlsToUrlQueue(CrawlerUrl url,
 Collection<String> urlStrings) {
 int depth = url.getDepth() + 1;
 for (String urlString : urlStrings) {
 if (!this.visitedUrls.containsKey(urlString)) {
 this.urlQueue.add(new CrawlerUrl(urlString, depth));
 }
 }
 }

The method extractUrls extracts two types of URLs. First, using the method
extractHttpUrls, it extracts URLs that begin with http and follow a particular pat-
tern. Second, using the method extractRelativeUrls, it extracts relative URLs using
the a href prefix. All extracted URLs are added to the queue.

 So far we’ve looked at the basic implementation of the crawler. Next, let’s look at
what’s required to make the crawler intelligent or focused.

6.2.5 Making the crawler intelligent

To guide the crawling process, we use a simple regular expression pattern matcher as
shown in listing 6.9.

 public static boolean isContentRelevant(String content,
 Pattern regexpPattern) {
 boolean retValue = false;
 if (content != null) {
 Matcher m = regexpPattern.matcher(content.toLowerCase());
 retValue = m.find();
 }
 return retValue;
 }

 private void saveContent(CrawlerUrl url, String content)
 throws Exception {
 this.crawlOutput.append(url.getUrlString()).append("\n");
 numberItemsSaved++;
 }

The implementation of the isContentRelevant method simply tests to see if the con-
tent matches a regular expression. In our case, the saveContent method simply adds
the URL to the list of interesting URLs.

Listing 6.9 Checking for relevant content

Adds extracted
URLs to queue
if unvisited

Content is relevant
when it matches pattern

Relevant
URLs written
to file

162 CHAPTER 6 Intelligent web crawling
 We’re now ready to make the crawler do some work for us.

6.2.6 Running the crawler

Now we’re ready to launch our crawler to find relevant information for us in the web.
Since this book is about collective intelligence, we use our crawler to find content related
to collective intelligence. We seed our crawler with the page on Wikipedia relating to col-
lective intelligence—http://en.wikipedia.org/wiki/Collective_intelligence—as shown
in listing 6.10.

public static void main(String[] args) {
 try {
 Queue<CrawlerUrl> urlQueue = new LinkedList<CrawlerUrl>();
 String url =
 "http://en.wikipedia.org/wiki/Collective_intelligence";

 String regexp = "collective.*intelligence";
 urlQueue.add(new CrawlerUrl(url, 0));
 NaiveCrawler crawler = new NaiveCrawler(urlQueue, 2000, 5,
 1000L,regexp);
 crawler.crawl();
 } catch (Throwable t) {
 System.out.println(t.toString()); }
 }

In our main program, we simply seed the crawler with a link to the Wikipedia site, set
it to search for content having phrase collective intelligence, and allow the crawler to crawl.

 Figure 6.3 shows the graph of the number of relevant URLs found by the crawler as
a function of how many URLs it visits. Note the couple of steep gradients where the
crawler finds a bunch of relevant content and then chugs along.

 Listing 6.11 shows a sample of the relevant URLs that were discovered by the
crawler. Imagine the usefulness of this tool when you’re researching a particular topic
of interest. This simple crawler can save you a considerable amount of time and effort
by automating the process of following hyperlinks to discover relevant content.

Listing 6.10 Main program for the crawler

Visit 2000 sites, depth
of 5, wait 1 second Crawl focused for

terms collective
and intelligence

Seed crawler with
Wikipedia page

Figure 6.3 Number of relevant URLs
retrieved as a function of number of
URLs visited

http://en.wikipedia.org/wiki/Collective_intelligence

163Building an intelligent crawler step by step
http://en.wikipedia.org/wiki/Collective_intelligence
http://en.wikipedia.org/wiki/Douglas_Engelbart
http://en.wikipedia.org/wiki/Francis_Heylighen
http://ko.wikipedia.org/wiki/%EC%A7%91%EB%8B%A8%EC%A7%80%EC%84%B1
http://de.wikipedia.org/wiki/Kollektive_Intelligenz
http://en.wikipedia.org/wiki/Category:Collective_intelligence
http://en.wikipedia.org/wiki/Superorganism
http://en.wikipedia.org/wiki/Crowd_psychology
http://pt.wikipedia.org/wiki/Intelig%C3%AAncia_coletiva
http://en.wikipedia.org/wiki/Collaborative_filtering
http://en.wikipedia.org/wiki/Group_think
http://zh.wikipedia.org/wiki/%E7%BE%A4%E9%AB%94%E6%99%BA%E6%85%A7
http://www.TheTransitioner.org
http://it.wikipedia.org/wiki/Intelligenza_collettiva
http://en.wikipedia.org/wiki/Swarm_Intelligence
http://en.wikipedia.org/wiki/Special:Whatlinkshere/Collective_intelligence
http://www.axiopole.com/pdf/Managing_collective_intelligence.pdf
http://www.communicationagents.com/tom_atlee/
http://cci.mit.edu/index.html
http://www.pmcluster.com/
...

In section 11.5.4, we use this output to create a specialized search engine.
 So far in this section, we’ve implemented a simple web crawler and made it intelli-

gent. This gave you an overview of the various components that are required to make
a crawler. Before we can use this in the real world, we need to make some enhance-
ments, which we look at next.

6.2.7 Extending the crawler

If your goal is to crawl the entire Web or major parts of it, you’ll need a crawler that’s
much more efficient than our simple single-threaded crawler. The bottleneck in a typ-
ical crawling process is the network delay in downloading content. Ideally, you want to
download content from different hosts simultaneously. For this, you may want to
enhance the crawler to have a pool of worker threads that work in parallel drawing
URLs from the URL queue. Or even better, you may want to enhance the crawler to
execute in parallel on distributed machines. You’ll need to store the URLs visited and
the queue of URLs to be visited in a database that’s accessible to all the machines. You
may also want to partition the URL space among the many machines, perhaps using
namespaces for the URLs.

 The model that we’ve used to focus the search is a simple pattern matcher. You‘ll
want to use more sophisticated models, which we develop in the second part of this
book. You may also want to enhance your crawler to visit URLs based on their rele-
vance. Some crawling processes prefer to visit URLs that are referenced by many other
sites; that is, sites with a high authority. Hubs—summary pages with many outgoing
links—are also typically preferred by crawlers.

 Given the dynamic nature of the web, you’ll want to visit pages periodically to keep
the content fresh. Commercial crawlers refresh content more often from sites that
have shown to be historically more dynamic. For example, a news site or the home

Listing 6.11 Sample of the URLs retrieved by the crawler

164 CHAPTER 6 Intelligent web crawling
page of a site with user-generated content is far more dynamic than static web pages
for a company web site. Efficient crawlers also have a way to detect mirror sites and
duplicate pages that a site may contain. Our simple crawler injects time delay between
successive URL requests; you may want to enhance it to inject a delay between succes-
sive URL requests to the same host.

 By this time, you should have a good understanding of how a web crawler works
and the issues related to building a truly scalable web crawler, which is a nontrivial
task. For large-scale web crawling, you’ll really want to use a scalable open source
crawler, such as Nutch, which we look at next.

6.3 Scalable crawling with Nutch
Nutch is a Java-based open source web crawler that has been demonstrated to scale
well. It was developed by Doug Cutting and is built on top of Lucene, an API for index-
ing and searching that we use throughout this book. Nutch uses a plug-in–based archi-
tecture, allowing it to be easily customized. Its processing is segmented, allowing it to
be distributed. Nutch consists of two main components: the crawler and the searcher.

 There are some excellent freely available tutorials to help set up Nutch and crawl
the Web.6 There are a couple of excellent articles on Java.net by Tim White that pro-
vide a great overview of how to crawl and search with Nutch version 0.7.

 In this section, we briefly go through the process of setting up and running ver-
sion 0.9 of Nutch on Windows. This section consolidates information from the many
tutorials and articles available on the Net, and there are some differences be-
tween 0.9 and the earlier versions. This section may well save you hours going
through the various tutorials on the Web. After this section, we talk about more
advanced concepts of Hadoop and MapReduce, which are used by Nutch to scale
and run in a distributed mode. If you’re serious about large-scale crawling, you prob-
ably want to go through this section and its referenced material in detail.

6.3.1 Setting up Nutch

Let’s set up Nutch to crawl Wikipedia, starting with the Wikipedia page on collective
intelligence. For this, we seed the engine with the same base URL that we used in the
previous section: http://en.wikipedia.org/wiki/Collective_intelligence. You need to
perform the following eight steps to carry out this intranet crawl.
GETTING THE REQUIRED SOFTWARE

1 Download Nutch. You can download the latest version from http://apache.
mirrors.hoobly.com/lucene/nutch/. This section works with version 0.9
(nutch-0.9. tar.gz; about 68Mb), which was released in April 2007. Unzip the
contents of the zipped file to create a directory nutch/nutch -0.9.

2 Nutch requires a Unix-like environment to run its shell scripts to create
indexes. If you’re trying this out in the Windows environment, you’ll need to
download and install Cygwin (http://www.cygwin.com/).

6 See http://wiki.apache.org/nutch/Nutch_-_The_Java_Search_Engine, http://wiki.apache.org/
nutch/Nutch_0%2e9_Crawl_Script_Tutorial, and http://lucene.apache.org/nutch/tutorial.html.

http://en.wikipedia.org/wiki/Collective_intelligence
http://apache.mirrors.hoobly.com/lucene/nutch/
http://apache.mirrors.hoobly.com/lucene/nutch/
http://www.cygwin.com/
http://wiki.apache.org/nutch/Nutch_-_The_Java_Search_Engine
http://wiki.apache.org/nutch/Nutch_0%2e9_Crawl_Script_Tutorial
http://wiki.apache.org/nutch/Nutch_0%2e9_Crawl_Script_Tutorial
http://lucene.apache.org/nutch/tutorial.html

165Scalable crawling with Nutch
3 We need a servlet container. If you don’t already have one, download Apache
Tomcat from http://tomcat.apache.org/download-55.cgi. I used Tomcat ver-
sion 6.0.13 (apache-tomcat-6.0.13.zip; 6.2 Mb).

4 Set NUTCH_JAVA_HOME to the root of your JVM installation. You’ll need
Java 1.4.x or better. For example, I set this variable to C:\dev\Java\jdk1.5.0_06
on my local system.

5 Make sure that Java, Tomcat, and Nutch are in your classpath. For example, my
classpath includes C:\nutch\nutch-0.9\bin;C:\apache-tomcat-6.0.13\apache-tom-
cat-6.0.13\bin; %JAVA_HOME%.

CREATING AN INDEX

6 Nutch uses a file to create an index of the content retrieved. Create a file
nutch/nutch-0.9/urls on your local file system.

7 Create a file called seed-urls with the following as the only entry in the file:
http://en.wikipedia.org/wiki/Collective_intelligence

CONFIGURING FOR INTRANET CRAWL

8 Edit the file conf/crawl-urlfilter.txt and replace MY.DOMAIN.NAME with the
name of the domain you wish to crawl. For our example, we limit the crawl to
the wikipedia.org domain, so the line should read

accept hosts in MY.DOMAIN.NAME
+^http://([a-z0-9]*\.)*wikipedia.org/

This regex will include any URL in the domain wikipedia.org.

6.3.2 Running the Nutch crawler

You’re now ready to launch the Wikipedia crawl. In your Cygwin window, go to the
directory nutch/nutch-0.9 and run this command:

nutch crawl urls -dir crawl.wiki-ci -depth 2

This launches the crawl process with a maximum depth of 2. The –dir option speci-
fies the directory in which content from the crawl should be stored. This creates a
directory crawl.wiki-ci under the nutch directory (C:\nutch\nutch-0.9\crawl.wiki-ci on
my system). Your Cygwin window should be similar to the one shown in figure 6.4.

Figure 6.4 The
Cygwin window after
the crawl command

http://tomcat.apache.org/download-55.cgi
http://en.wikipedia.org/wiki/Collective_intelligence

166 CHAPTER 6 Intelligent web crawling
After a few minutes, the crawl should finish and there
should be a new directory under nutch-0.9 called crawl.
wiki-ci, as shown in figure 6.5.

 Nutch has created four main directories to store the
crawling information:

■ Crawldb —Stores the state of the URLs along with
how long it took to fetch, index, and parse the data.

■ Indexes —A set of indexes created by Lucene.
■ Linkdb —This directory contains the links associ-

ated with each URL, including the source URL and
the anchor text of the link.

■ Segments —There are a number of segments in this
directory. Each segment is named based on the
date and time that it was created and contains the
pages that are fetched by the crawler during a par-
ticular run.

Next, let’s look at statistics associated with the crawldb. Execute the following command:

nutch readdb crawl.wiki-ci/crawldb –stats

You should see output similar to that shown in figure 6.6.

It’s also helpful to dig deeper into the crawldb and get a dump of the contents in the
database. Execute the following command:

nutch readdb crawl.wiki-ci/crawldb –dump crawl.wiki-ci/stats

This generates a file C:\nutch\nutch-0.9\crawl.wiki-ci\stats part-000, the contents of
which will be similar to listing 6.12.

http://ar.wikipedia.org/wiki/%D8%BA%D8%A8%D8%A7%D8%A1 Version: 5
Status: 1 (db_unfetched)
Fetch time: Sat Sep 15 10:32:03 PDT 2007
Modified time: Wed Dec 31 16:00:00 PST 1969
Retries since fetch: 0
Retry interval: 30.0 days
Score: 2.3218017E-4

Listing 6.12 Dump of the URLs from the crawldb

Figure 6.6 The stats
associated with the crawldb

Figure 6.5 The directory
structure after the crawl

167Scalable crawling with Nutch
Signature: null
Metadata: null

http://ca.wikipedia.org/wiki/M%C3%A8trica_%28matem%C3%A0tiques%29
 Version: 5
Status: 1 (db_unfetched)
Fetch time: Sat Sep 15 10:32:02 PDT 2007
Modified time: Wed Dec 31 16:00:00 PST 1969
Retries since fetch: 0
Retry interval: 30.0 days
Score: 3.1979533E-4
Signature: null
Metadata: null

You can look into the contents of the segments in a similar manner:

nutch readseg –dump crawl.wiki-ci/
 segments/20070915103026 crawl.wiki-ci/stats/segments

This create a file dump in C:\nutch\nutch-0.9\crawl.wiki-ci\stats\segments.
 Next, in listing 6.13 let’s see how we can search the newly created search index

using the Nutch web application.

Recno:: 0
URL:: http://en.wikipedia.org/

CrawlDatum::
Version: 5
Status: 67 (linked)
Fetch time: Sat Sep 15 10:30:33 PDT 2007
Modified time: Wed Dec 31 16:00:00 PST 1969
Retries since fetch: 0
Retry interval: 30.0 days
Score: 0.016949153
Signature: null
Metadata: null

Recno:: 1
URL:: http://en.wikipedia.org/skins-1.5

CrawlDatum::
Version: 5
Status: 67 (linked)
Fetch time: Sat Sep 15 10:30:33 PDT 2007
Modified time: Wed Dec 31 16:00:00 PST 1969
Retries since fetch: 0
Retry interval: 30.0 days
Score: 0.016949153
Signature: null
Metadata: null

With this overview, let’s next look at how we can set up Nutch to search for the con-
tents that have been crawled.

Listing 6.13 Dump of a Nutch segment

168 CHAPTER 6 Intelligent web crawling
6.3.3 Searching with Nutch

When you unzip your Nutch installation, you should find the nutch.war file. Place this
war file in your Tomcat webapps directory. The Nutch web application finds its
indexes in the /segments directory where you start Tomcat, so we need to point
Nutch to where we have the crawled data. Therefore, go to

C:\apache-tomcat-6.0.13\apache-tomcat-6.0.13\webapps\nutch\WEB-INF\classes\
nutch-site.xml

Change the contents of this file to those shown in listing 6.14.

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->
<configuration>
<property>
<name>searcher.dir</name>
<value>C:\nutch\nutch-0.9\crawl.wiki-ci</value>
</property>
</configuration>

Now, start up Tomcat (startup.sh) and point your browser to the following URL
(assuming that Tomcat is running on its default port of 8080):

http://localhost:8080/nutch

Your browser window should show the Nutch search screen, as shown in figure 6.7.

Listing 6.14 Configuring nutch-site.xml

Directory where
Nutch should get data

Figure 6.7 The search screen for the Nutch application

169Scalable crawling with Nutch
Search for the term collective intelligence and your browser should look similar to the
one in figure 6.8. Play around with the various links, especially the explain and
anchors links that are associated with each result.

 So far in this section, we’ve gone through a simple example to crawl Wikipedia,
starting with its page on collective intelligence. We’ve gone through the various direc-
tories generated by Nutch and looked at how to use the search tool. This should have
given you a good overview of how to use Nutch. I referred you to the various refer-
ences to set up the system to do a full Internet crawl and maintain the crawled data.
Before we end this section, it’s useful to briefly go through two important concepts:
Apache Hadoop and MapReduce. These are the principles on which Nutch has been
built to scale to billions of pages using commodity hardware in a distributed platform.

6.3.4 Apache Hadoop, MapReduce, and Dryad

Apache Hadoop is a software platform that lets you write and run applications for pro-
cessing large datasets using commodity hardware in a distributed platform. Hadoop
uses the Hadoop Distributed File System7 (HDFS) and implements MapReduce.8

 HDFS is a part of Apache Hadoop project, which in turn is a subproject of Apache
Lucene. HDFS is motivated by concepts used in the Google File System.9 The MapRe-
duce concept has been extensively used by Google and deals with dividing the applica-
tion into small units of work that can be executed in a distributed environment.

7 See http://lucene.apache.org/hadoop/hdfs_design.htm.
8 See Dean, J., and Ghemawat, S., MapReduce: Simplified Data Processing on Large Clusters, http://

labs.google.com/papers/mapreduce.html.
9 http://labs.google.com/papers/gfs.html

Figure 6.8 Searching for collective intelligence using the Nutch search application

http://lucene.apache.org/hadoop/hdfs_design.htm
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/gfs.html

170 CHAPTER 6 Intelligent web crawling
Apache Hadoop aims to provide an open source implementation of MapReduce that
anyone can use in their own distributed environment.

 In the MapReduce paradigm, computation is split into two parts. First, apply a map
function to each logical record to generate a set of intermediate key/value pairs.
Then apply a reduce operation to compute a final answer that combines all the values
for a given key.

 A simple example best illustrates the paradigm, and is illustrated in figure 6.9.
Assume that we need to compute the term frequencies associated with the various
terms in a page. Using part of the example we looked at in section 4.3, let’s assume
that a page consists of the following text:

Collective Intelligence: Collective intelligence improves user experience

To process this, we would write a map method that is passed, say, an ID for the page as
the key and the page text as the value. This method then generates seven intermedi-
ate key value pairs, one for each word, as shown in figure 6.9. These intermediate val-
ues are processed by the reduce function that counts the values for each of the keys.
The output from the reduce function consists of five terms with their associated fre-
quencies. Using this paradigm, a developer doesn’t need to worry about distribution;
the code is automatically parallelized.

 Nutch uses Apache Hadoop and the MapReduce paradigm to scale to crawling
and indexing billions of pages. For more details on Hadoop and MapReduce, see the
references on this topic.

 Microsoft’s answer to MapReduce has been the development of Dryad.10 Dryad is a
distributed computing platform developed by Microsoft Research and designed to
provide operating system–level abstraction for thousands of PCs in a data center. Like
MapReduce, a programmer can leverage parallel processing capabilities of thousands
of machines without knowing anything about concurrent programming. With Dryad,
you write several sequential programs and then connect them using one-way channels.

10 http://research.microsoft.com/research/sv/dryad/

Collective Intelligence:
Collective intelligence

improves user experience

Map

intelligence, 1

collective, 1

intelligence, 1

improves, 1

user, 1

experience, 1

collective, 1

Reduce

collective, 2

intelligence, 2

improves, 1

user, 1

experience, 1

Figure 6.9 MapReduce example
for counting term frequencies

http://research.microsoft.com/research/sv/dryad/

171Resources
The computation can be represented as a directed graph, with each vertex corre-
sponding to a program and channels corresponding to the edges of the graph. A job
in Dryad corresponds to traversing a directed acyclic graph, whose structure can
change even during execution. Dryad infrastructure manages the creation, manage-
ment, monitoring, and visualization of jobs. It provides fault-tolerance to machine fail-
ures and automatically re-executes failed jobs.

 In this section, we looked at using the open source crawler, Nutch, for crawling the
web. We also looked at how Nutch can be used for searching through the retrieved
content and the various options for building a scalable web crawler.

6.4 Summary
Web crawlers are programs that retrieve content from sites by following hyperlinks in
the document. Crawlers are useful for retrieving content from external sites. When
the crawling process is guided by relevancy, it’s called focused or intelligent crawling.

 A typical focused crawling process consists of seeding the crawler with some seed
URLs. The crawler visits the next available URL, retrieves the content, and measures
the relevance of the content to the topic of interest. If the content is acceptable, then
it parses the content to extract URLs and in turn visits these URLs.

 There are significant costs associated with crawling the entire Web. These include
costs for the software and hardware, high-speed network access, storage devices, and
administrating the infrastructure. Using a focused crawler can help retrieve relevant
information by crawling a subset of available crawling URLs.

 With this chapter, we conclude the first part of the book that deals with gathering
information from within and outside your application. In the next part, we look at how
to analyze this information and build models to make your application more intelligent.

6.5 Resources
 A Standard for Robots Exclusion. http://www.robotstxt.org/wc/norobots.html
 Chakrabarti , Soumen. Mining the Web. Discovering Knowledge from Hypertext Data. 2005. Morgan Kaufmann

Publishers.
 Chakrabarti, Soumen, Martin H. Van den Berg, and Byron E. Dom. “Focused Crawling: A New Approach

to Topic-Specific Web Resource Discovery.” 1999. Proceedings of the 8th International WWW Con-
ference, pp. 545-562.

 Cutting, Doug. “MapReduce in Nutch.” http://wiki.apache.org/nutch-data/attachments/
Presentations/attachments/mapred.pdf

 Dean, J., and S. Ghemawat. “MapReduce: Simplified Data Processing on Large Clusters.” http://
labs.google.com/papers/mapreduce.html

 De Bra, Paul, Geert-Jan Houben, Yoram Kornatzky, and Renier Post. “Information Retrieval in Distrib-
uted Hypertexts.” 1994. Proceedings of the 4th RIAO (Computer Assisted Information Retrieval)
Conference, pp. 481-491.

 Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. “The Google File System.” http://
labs.google.com/papers/gfs.html

 Gulli, A., and A. Signorini. “The Indexable Web is more than 11.5 billion pages.” 2005. http://
www.cs.uiowa.edu/~asignori/web-size/

 Hadoop. http://lucene.apache.org/hadoop/

http://www.robotstxt.org/wc/norobots.html
http://wiki.apache.org/nutch-data/attachments/Presentations/attachments/mapred.pdf
http://wiki.apache.org/nutch-data/attachments/Presentations/attachments/mapred.pdf
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/gfs.html
http://labs.google.com/papers/gfs.html
http://www.cs.uiowa.edu/~asignori/web-size/
http://www.cs.uiowa.edu/~asignori/web-size/
http://lucene.apache.org/hadoop/

172 CHAPTER 6 Intelligent web crawling
 “How Google Works.” http://www.baselinemag.com/article2/0,1540,1985048,00.asp
 Isard, Michael, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. “Dryad,

Distributed Data-Parallel Programs from Sequential Building Blocks.” Eurosys ’07. http://
research.microsoft.com/users/mbudiu/eurosys07.pdf

 Lucene Hadoop Wiki. http://labs.google.com/papers/gfs.html
 “Nutch 0.9 Crawl Script Tutorial.” http://wiki.apache.org/nutch/Nutch_0%2e9_Crawl_Script_Tutorial
 Nutch, the Java Search Engine. http://wiki.apache.org/nutch/Nutch_-_The_Java_Search_Engine
 Nutch Wiki. http://wiki.apache.org/nutch/
 NutchHadoop Tutorial. “How to Setup Nutch and Hadoop.”
 http://wiki.apache.org/nutch/NutchHadoopTutorial
 Perez, Juan Carlos, IDG News Service. “Google Counts More Than 1 Trillion Unique Web URLs”,

http://www.pcworld.com/businesscenter/article/148964/
google_counts_more_than_1_trillion_unique_web_urls.html

 ”Simple MapReduce Tutorial.” http://wiki.apache.org/nutch/SimpleMapReduceTutorial
 Sitemaps. http://en.wikipedia.org/wiki/Sitemaps
 “The Hadoop Distributed File System: Architecture and Design.” http://lucene.apache.org/hadoop/

hdfs_design.htm
 What are sitemaps? http://www.sitemaps.org/
 White, Tom. Tom White’s Blog. “MapReduce.” http://weblogs.java.net/blog/tomwhite/archive/2005/

09/mapreduce.html
 “Introduction to Nutch, Part 1: Crawling.” http://today.java.net/pub/a/today/2006/01/10/

introduction-to-nutch-1.html
 “Introduction to Nutch, Part 2: Searching.” http://today.java.net/pub/a/today/2006/02/16/

introduction-to-nutch-2.html
 Zhuang, Ziming, Rohit Wage, and C. Lee Giles. “What’s There and What’s Not? Focused Crawling for

Missing Documents in Digital Libraries.” 2005. JCDL, pp. 301-310.

http://www.baselinemag.com/article2/0,1540,1985048,00.asp
http://research.microsoft.com/users/mbudiu/eurosys07.pdf
http://research.microsoft.com/users/mbudiu/eurosys07.pdf
http://labs.google.com/papers/gfs.html
http://wiki.apache.org/nutch/Nutch_0%2e9_Crawl_Script_Tutorial
http://wiki.apache.org/nutch/Nutch_-_The_Java_Search_Engine
http://wiki.apache.org/nutch/
http://wiki.apache.org/nutch/NutchHadoopTutorial
http://www.pcworld.com/businesscenter/article/148964/google_counts_more_than_1_trillion_unique_web_urls.html
http://www.pcworld.com/businesscenter/article/148964/google_counts_more_than_1_trillion_unique_web_urls.html
http://wiki.apache.org/nutch/SimpleMapReduceTutorial
http://en.wikipedia.org/wiki/Sitemaps
http://lucene.apache.org/hadoop/hdfs_design.htm
http://lucene.apache.org/hadoop/hdfs_design.htm
http://www.sitemaps.org/
http://weblogs.java.net/blog/tomwhite/archive/2005/09/mapreduce.html
http://weblogs.java.net/blog/tomwhite/archive/2005/09/mapreduce.html
http://today.java.net/pub/a/today/2006/01/10/introduction-to-nutch-1.html
http://today.java.net/pub/a/today/2006/01/10/introduction-to-nutch-1.html
http://today.java.net/pub/a/today/2006/02/16/introduction-to-nutch-2.html
http://today.java.net/pub/a/today/2006/02/16/introduction-to-nutch-2.html

Part 2

Deriving intelligence

Now that we’ve collected data, in this part we focus on deriving intelligence
from it. Part 2 consists of four chapters—an introduction chapter to the data min-
ing process, standards, and toolkits, followed by chapters on developing a text-
analysis toolkit, finding patterns through clustering, and making predictions.

 Chapter 7 should give you a good overview of the data mining process, along
with a basic understanding of WEKA, the open source data mining toolkit, and
JDM, the standard data mining API. Next, in chapter 8 we develop a text-processing
toolkit to analyze unstructured content. This toolkit is useful for converting text
into a format that’s usable by the learning algorithms. Chapter 9 deals with finding
patterns of similar items using the process of clustering. Lastly, chapter 10 looks
at how we can make predictions by using classification and regression algorithms.

 At the end of this part, you should have a good understanding of the data min-
ing process, the various APIs, and the key algorithms for deriving intelligence.

Data mining: process,
 toolkits, and standards
The data mining process enables us to find gems of information by analyzing data.
In this chapter, you’ll be introduced to the field of data mining. The various data min-
ing algorithms, tools, and data mining jargon can be overwhelming. This chapter
provides a brief overview and walks you through the process involved in building use-
ful models. Implementing algorithms takes time and expertise. Fortunately, there are
free open source data mining frameworks that we can leverage. We use WEKA—Wai-
kato Environment for Knowledge Analysis—a Java-based open source toolkit that’s
widely used in the data mining community. We look at the core packages of WEKA and
work through a simple example to show how WEKA can be used for learning. We really
don’t want our implementation to be specific to WEKA. Fortunately, two initiatives
through the Java Community Process—JSR 73 and JSR 247—provide a standard API

This chapter covers
■ A brief overview of the data mining process
■ Introduction to key mining algorithms
■ WEKA, the open source data mining software
■ JDM, the Java Data Mining standard
175

176 CHAPTER 7 Data mining: process, toolkits, and standards
for data mining. This API is known as Java Data Mining (JDM). We discuss JDM in the last
section of this chapter and review its core components. We take an even deeper look at
JDM in chapters 9 and 10, when we discuss clustering and predictive models.

7.1 Core concepts of data mining
Data mining is the automated process of analyzing data to discover patterns and build
predictive models. Data mining has a strong theoretical foundation and draws from
many fields, including mathematics, statistics, and machine learning. Machine learning
is a branch of artificial intelligence that deals with developing algorithms that
machines can use to learn the patterns in data in an automated manner. Data mining
is different from data analysis, which typically deals with fitting data to already-known
models. Querying for data and analyzing the data for summaries and trends—com-
monly known as reporting and OLAP (online analytic processing)—are common forms of
data analysis. Data mining, on the other hand, deals with the discovery of previously
unknown patterns or models by analyzing the data. They provide new insight into the
data being analyzed. Reporting, OLAP, and data mining all fall in the general area of
business intelligence.

 In this section, we look at some of the core concepts associated with the process of
data mining. We first discuss the three forms of attributes: numerical, ordinal, and
nominal. Next, we look at supervised and unsupervised learning, some of the key
learning algorithms, and the data mining process.

7.1.1 Attributes

A learning algorithm needs data in order to learn and find patterns; this data can be
in the form of examples, where each example consists of a set of attributes or dimen-
sions. Each attribute should be independent of other attributes; it shouldn’t be possi-
ble to compute the value of an attribute based on another attribute’s value.
Depending on whether the attributes can be ordered and the kind of values they can
take, we can categorize attributes into the following three forms:

■ Numerical values have a real number associated with them. Two numerical val-
ues can be compared. Further, numerical values can be continuous (for exam-
ple, a person’s age) or can take only discrete values, such as the number of
images uploaded by a user. Since every numerical value can be compared to
another numerical value, there is ordering associated with numerical attributes.
Furthermore, the difference in magnitude between two numerical values pro-
vides a measure of closeness—for example, the number 5 is closer to 3 than the
number 10.

■ Ordinal values are also discrete, but there is ordering associated with them. For
example, {small, medium, large} may be used to characterize the size of an arti-
cle. Here, there’s no absolute measurement of how much smaller small is com-
pared to medium; just that medium is larger than small, while large is larger
than medium.

177Core concepts of data mining
■ Nominal values consist of discrete values that are in no particular order, also
sometimes called categorical. For example, the color of a person’s eyes could be
{blue, green, black, brown}. Here, a linear distance measure isn’t helpful in get-
ting a measure of closeness between two points—for example, there’s no way to
state that blue is closer to green than black in the previous example.

There are a number of algorithms that work either with continuous values or with
nominal values. It’s possible to convert a continuous variable into a discrete variable
and vice versa.

 Continuous numeric values can be discretized by creating appropriate bins. For
example, the number of times a user has logged in to the application in a week can be
converted into discrete values, small, medium, and large. One such binning criteria
might be this: if the number of logins is one, then it falls in the small category, two to
five logins corresponds to the medium category, while greater than five amounts to a
large number of logins.

 Discrete variables can be converted to numerical variables in the following man-
ner. First, let’s consider the example of a person’s eye color. There were four values
associated with this nominal variable: {blue, green, black, brown}. This can be trans-
formed into four attributes: blue, green, black, and brown. These attributes have a value
of 1 when the color of the person’s eyes matches the attribute; otherwise the value is 0.

 Ordinal variables that are discrete and have an ordering associated with them can
be treated differently. Let’s consider an attribute that takes three values, small, medium,
and large. This can be converted into three attributes, small, medium, and large. When a
variable takes the large value, all these three attributes take the value of 1; medium cor-
responds to setting the small and medium attributes to a value of 1; while a value of
small will correspond to simply setting the variable small to 1. Table 7.1 summarizes the
common terms used to describe the different kinds of attributes.

 Algorithms that discover relationships between different attributes in a dataset are
known as association rule algorithms, while algorithms that analyze the importance of
an attribute in relation to predicting the value of another attribute or in clustering
data are known as attribute importance algorithms.

Table 7.1 Common terms used to describe attributes

Attribute
type

Description
Discrete/
continuous

Example

Continuous Takes real values Continuous The amount of time spent by
a user on the site

Ordinal There is ordering in the fixed set of val-
ues that the attribute can take

Discrete or
continuous

Length of session expressed
as {small, medium, large}

Nominal There is no ordering related to the values
taken from the fixed set by the attribute

Discrete Gender of a person {male,
female}

file:///C:\download\JDM\jdm11javadoc\javax\datamining\base\Task.html
file:///C:\download\JDM\jdm11javadoc\javax\datamining\base\Task.html
file:///C:\download\JDM\jdm11javadoc\javax\datamining\ExecutionHandle.html
file:///C:\download\JDM\jdm11javadoc\javax\datamining\ExecutionHandle.html
file:///C:\download\JDM\jdm11javadoc\javax\datamining\NamedObject.html
file:///C:\download\JDM\jdm11javadoc\javax\datamining\JDMException.html
file:///C:\download\JDM\jdm11javadoc\javax\datamining\JDMException.html
file:///C:\download\JDM\jdm11javadoc\javax\datamining\JDMException.html
file:///C:\download\JDM\jdm11javadoc\javax\datamining\ExecutionStatus.html

178 CHAPTER 7 Data mining: process, toolkits, and standards
Based on how data is analyzed, algorithms can be classified into supervised and unsu-
pervised learning, which we look at next.

7.1.2 Supervised and unsupervised learning

In supervised learning, we have a training dataset, with a set of
instances or examples for which the predicted value is known.
Each example consists of input attributes and a predicted
attribute, as shown in figure 7.1. The aim of the algorithm is
to build a mathematical model that can predict the output
attribute value given a set of input attribute values. Decision
trees, neural networks, regression, Bayesian belief networks,
and so on are all examples of predictive models. The predictive
models built by some algorithms such as decision trees, belief
networks, and rule induction are easier to understand than
those of other algorithms such as neural networks and regres-
sion. The accuracy of a predictive model is measured by means of how well the model
does on previously unseen data. When the predicted attribute—the target—is a cate-
gorical attribute, the prediction model is also known as a classifier and the problem is
one of classification. For example, a predictive modeler might classify a blog entry into
appropriate categories. When the output attribute is a continuous, it’s also known as a
regressor and the problem is one of regression.

 In unsupervised learning, there’s no predicted value to be learned. The algorithm ana-
lyzes the multidimensional data to form clusters—groups of similar points. For example,
figure 7.2 shows two clusters formed by analyzing two-
dimensional data. K-means clustering, hierarchical clus-
tering, and density-based clustering are examples of com-
monly used clustering algorithms. Unsupervised
learning is good at analyzing the data and discovering
patterns in an automated manner.

 Now that we’ve classified the various learning algo-
rithms into supervised and unsupervised learning, let’s
briefly look at some commonly used learning algo-
rithms. We revisit a few of these algorithms in greater
detail in chapters 9 and 10.

7.1.3 Key learning algorithms

In this section, we provide a high-level overview of some the commonly used learning
algorithms: decision trees, clustering, regression, neural networks (MLP and RBF),
SVM, and Bayesian algorithms.

 A decision tree is one of the most commonly used classifiers and deals only with
nominal attributes. Let’s go through an example to understand the basic concepts.
Let’s assume that we want to predict whether a user will like a recently introduced
new feature in our application. Assume that we’ve created a dataset consisting of two

Predictive
Model

Input Attributes

Predicted Attribute

Figure 7.1 A predictive
model makes a prediction
based on the values for
the input attributes.

Attribute 1

Attribute 2

Figure 7.2 Two clusters in a
two-dimensional attribute space
found by analyzing the proximity
of the data points

179Core concepts of data mining
attributes: user gender and number of logins. The first step is to create all the attributes
into nominal attributes. By the process of binning, the number of logins gets con-
verted into three values: {small, medium, and large}. The user’s gender is already
nominal and can take two values: {male, female}. Let’s assume that we’ve created a
dataset where each instance is a user with these two outputs, along with whether the
user liked the new feature. Figure 7.3 shows an example decision tree, which con-
sists of nodes and links. A node in the tree corresponds to an attribute value evalua-
tion. The root node in this example corresponds to the attribute number of logins.
The arcs correspond to the categorical values asso-
ciated with the attribute. There are three links from
the parent node corresponding to the three nomi-
nal values associated with the attribute: {small,
medium, large}.

 It’s easy to translate decision trees into rules to
understand the logic discovered. For example, the
rule for the output from the second row is

If {number of logins = “small”} and {gender = male} then ….
If {number of logins = “small”} and {gender = female} then ….

Among clustering algorithms, k-means is perhaps one of the most well-known. The
algorithm is typically seeded with k randomly selected clusters, where k is the number
of predefined clusters. Each example is then associated with the cluster whose center
is closest to that point. At the end of the iteration, the means of the k clusters are
recomputed by looking at all the points associated with the cluster. This process of
learning continues until the examples don’t move between clusters or a maximum
number of iterations is reached.

 Hierarchical clustering is another popular clustering algorithm. In this algorithm,
each data point starts as its own cluster. Next, two points that are most similar are com-
bined together into a parent node. This process is repeated until we’re left with no
more points to combine.

 Density-based clustering algorithms try to find high-density areas that are sepa-
rated by low-density areas. These algorithms automatically determine the number of
clusters by omitting low-density regions, which are treated as noise. We look at cluster-
ing algorithms in greater detail in chapter 9.

 Given two points in a two-dimensional space, it’s fairly straightforward to
compute the two constants associated to find a line that joins two points. Now
extend this concept to finding the line or other higher-dimensional functions that
best fit multiple points in a multi-dimensional space. Regression-based algorithms
represent the data in a matrix form and transform the matrix to compute the
required parameters. Regression-based techniques require numerical attributes to
create the predictive models. These algorithms aim to minimize the sum of the
squared error between the predicted value and the actual value for all the cases in
the training dataset.

Attribute = Number of Logins

small large
medium

Attribute = Gender

M F

Figure 7.3 An example decision
tree showing two attributes

180 CHAPTER 7 Data mining: process, toolkits, and standards
 Multi-layer perceptron (MLP) and radial basis functions
(RBF) are two of the most commonly used neural net-
works. Neural networks are useful both as predictive
models and as classifiers.

 An MLP consists of a number of layers, beginning
with the input layer as shown in figure 7.4. The num-
ber of input nodes corresponds to the number of
input attributes. Depending on the nature of the trans-
formation function used by the node, the input values
may be scaled between –1 and 1. Links in the network correspond to a weight by
which the output from the node is multiplied. In a three-layer network, the second set
of nodes is known as hidden nodes. The input to a node is the sum of the outputs from
the nodes, multiplied by the weight associated with the link. The third layer is the out-
put layer and predicts the attribute of interest.

 Building an MLP predictive model consists of estimating the weights associated
with each of the links. Typically, a gradient descent algorithm is used to learn the
weights associated with an MLP; the learning procedure is known as back propagation.
With this procedure, there’s no guarantee of finding a global minimum, and the
learning process may be enhanced to run in conjunction with some optimization
methodologies, such as simulated annealing or genetic algorithms.

 In an RBF, first the data is clustered into k-clusters using the k-means clustering
algorithm. Each cluster corresponds to a node in the network, the output from which
is dependent on the proximity of the input to the center of the node. The output
from this layer is transformed into the output using weights. Learning the weights
associated with these links is a linear regression problem.

 A relatively new algorithm that’s becoming popular for classification problems is the
support vector machines (SVM) algorithm. Consider a two-dimensional space with a large
number of points. There are a large number of lines that can be used to divide the points
into two segments; let these lines be known as separating lines. Now define margin as the
distance between a separating line and a parallel line that passes through the closest
point to the line. SVM selects the line that has the maximum margin associated with it.
Points that this second, parallel line passes through are known as support vector points.
SVM generalizes this concept across multiple dimensions and has been observed to work
well. The output variable can be discrete, containing two values, or continuous.

 Algorithms based on probability theory are commonly known as Bayesian algo-
rithms. One such simple but good classifier is the Naïve Bayes’ classifier. This algo-
rithm assumes independence between the input attributes and makes a prediction
based on estimating probabilities from the training data. Bayesian belief networks (BBN),
also known as probabilistic belief networks, are another approach at estimating the proba-
bilities using the Bayes’ theorem. BBNs are directed acyclic graphs (DAG), where a link
signifies conditional distribution function between the parent and the child node.

 Table 7.2 summarizes the different kinds of algorithms used for mining data, along
with the kinds of input and output attributes.

Figure 7.4 A multi-layer
perceptron where the input from
one layer feeds into the next layer

181Core concepts of data mining
There’s a lot more involved in understanding and implementing these algorithms.
We take a more detailed look at a few of them in later chapters. Fortunately, rather
than having to reimplement all these algorithms, there are a few open source data
mining platforms that we can leverage, one being WEKA. You can find the list of
data mining tool vendors at http://www.dmoz.org//Computers/Software/Databases/
Data_Mining/Tool_Vendors/.

 With this brief overview on the different kinds of learning algorithms, we’re now
ready to look at the process of analyzing data to discover intelligence.

7.1.4 The mining process

Analyzing data to build a predictive model or discover clusters consists of the follow-
ing six steps. Typically, the process is iterative, where you may repeat these steps in the
quest for a better model or to refine an existing one:

1 Modeling and selecting the attributes —We first need to understand what we’re look-
ing for. Is our aim to build a predictive model or find patterns in the data? Based
on the needs, identify the attributes that are available for use in the analysis.

2 Creating the learning dataset —We need a set of examples—a dataset—to be used by
the algorithm. The dataset is typically broken up into two datasets: the training
dataset which usually contains 90 percent of the data and is used for creating the
predictive model, and the testing dataset, which is used for evaluating the quality
of the predictive model. It may be computationally infeasible or too expensive to
analyze all entries in a large dataset. In this case, random sampling is used to cre-
ate a smaller dataset that’s expected to be representative of the complete dataset.

Table 7.2 Summary of different kinds of data mining algorithms

Type of
algorithm

Description Type of input
Type of
output

Example

Regression Builds a predictive model
that predicts the output
variable based on the val-
ues of the inputs

Continuous Continuous Regression, neural
networks

Classification Predicts the output value for
the discrete output variable

Discretea Discrete Decision tree, Naïve Bayes’

Clustering Creates clusters in data to
find patterns

Discrete or
continuous

None k-means, hierarchical
clustering, density-based
algorithms

Attribute
importance

Determines the impor-
tance of attributes with
respect to predicting the
output attribute

Discrete or
continuous

None Minimum description
length, decision tree
pruning

Association
rules

Finds interesting relation-
ships in data by looking at
co-occurring items

Discrete None Association rules, Apriori

a. Many tool sets allow the use of both continuous and discrete variables as input for regression and classification.

http://www.dmoz.org//Computers/Software/Databases/Data_Mining/Tool_Vendors/
http://www.dmoz.org//Computers/Software/Databases/Data_Mining/Tool_Vendors/

182 CHAPTER 7 Data mining: process, toolkits, and standards
3 Normalizing and cleaning the data —Instances that have missing values for any of
the attributes are removed from the dataset. Further, each attribute may be nor-
malized between the scales of [–1, 1] or [0, 1]. Typically, a distance measure is
used, and normalizing the data ensures that an attribute doesn’t skew the dis-
tance measurement due to a bigger range of values. For example, an attribute
that takes a value between 0 and 100 will show a bigger distance measure for
two points than an attribute that takes values between 0 and 1.

4 Analyzing the data —The training dataset is analyzed to either build a predictive
model or discover clusters. A common problem to avoid in analyzing the data is
overfitting the data—the model memorizes the training data, leading to poor
predictive capabilities. The algorithm may be intelligent enough to prune the
number of attributes being used based on their effectiveness in predicting the
attribute of interest.

5 Evaluating the quality of the predictive model —The quality of the predictive model
is evaluated using the testing dataset.

6 Embedding the predictive model —Once a predictive model has been built, it can be
embedded in your application to make predictions.

A common approach to avoid overfitting and select the best predictive model is to use
the k-fold cross validation strategy. This approach is typically used when the number of
examples available for learning and testing is small. In this case, the dataset is broken
randomly into k subsets. K sets of learning runs are executed, where one of the k sets is
used for validating the predictive model while the other remaining (k–1) datasets are
used for the learning process. Typically, the error associated with a predictive model is
the average error in the test data across the k runs. A number of predictive models
may be created using different algorithms or different settings, and the one with the
least average error across the k runs is selected.

 With this background on the data mining process and the key learning algorithms,
it’s helpful to work through an example to see the learning process in action. Writing
learning algorithms can be complex and tedious; fortunately, a lot of work has been
done in the open source community for us. We leverage one such open source data
mining framework: WEKA.

7.2 Using an open source data mining framework: WEKA
The Waikato Environment for Knowledge Analysis, commonly known as WEKA, is one
of the most popular suites of data mining algorithms that have been written in Java.
WEKA is available under the GNU General Public License.1 WEKA was developed at the
University of Waikato in New Zealand. Early work on WEKA began in 1993; work on
the Java version started in 1997. In September 2006, Pentaho,2 a developer of open
source business intelligence software, bought WEKA. WEKA contains tools for data pre-
processing, classification, regression, clustering, association rules, and visualization. It

1 http://www.gnu.org/copyleft/gpl.html
2 http://www.pentaho.com/

http://www.gnu.org/copyleft/gpl.html
http://www.pentaho.com/

183Using an open source data mining framework: WEKA
also has a GUI application through which you can apply the various data mining algo-
rithms to datasets. We are more interested in its Java API and will use that directly.

 Over the years, the WEKA APIs have been leveraged to build additional tools and
packages—you can see a list of these at http://weka.sourceforge.net/wiki/index.php/
Related_Projects. RapidMiner,3 formerly known as Yet Another Learning Environment
(YALE), is one such project that leverages WEKA to provide an environment for data min-
ing. There’s also an excellent book on data mining and WEKA written by two of the pro-
fessors4 associated with WEKA.

 In this section, we familiarize ourselves with the WEKA learning platform. We begin
with a brief tutorial in which we use the WEKA learning environment to orient our-
selves with the WEKA Java packages and key classes. Next, we write a simple example
that invokes the WEKA API. At the end of this section, you should be familiar with
WEKA, its GUI application and Java API, and what’s involved in embedding the plat-
form. We leverage WEKA later in chapters 9, 10, and 12.

7.2.1 Using the WEKA application: a step-by-step tutorial

We begin with a brief tutorial to guide us through installing and running WEKA on
Windows.
INSTALLING WEKA

First, we need to download the WEKA package from http://www.cs.waikato.ac.nz/ml/
weka/. We use the developer version 3.5.6. Note that the WEKA book uses an older
version, 3.4. If you don’t have Java, download the self-extracting executable that
includes Java VM 5.0 (weka-3-5-6jre.exe; 31,661,572 bytes); otherwise download the
WEKA version (weka-3-5-6.exe; 15,665,809 bytes) that doesn’t have the JVM. Install the
software using the default values. I installed mine at C:\Program Files\Weka-3-5. If you
open this directory on your machine, it should look similar to figure 7.5.

3 http://rapid-i.com/content/blogcategory/10/69/
4 Ian H. Witten and Eibe Frank Data Mining: Practical machine learning tools and techniques, 2nd Edition. Morgan

Kaufmann, San Francisco, 2005.

Figure 7.5 The
directory structure
and some of the
files for WEKA

http://weka.sourceforge.net/wiki/index.php/Related_Projects
http://weka.sourceforge.net/wiki/index.php/Related_Projects
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://rapid-i.com/content/blogcategory/10/69/

184 CHAPTER 7 Data mining: process, toolkits, and standards
A good place to start is to open the documentation.html page that’s available in the
Weka-3-5 directory, a screenshot of which is shown in figure 7.6.

 The top three links on the page are tutorials for the three environments for which
WEKA has a GUI application. These components are

■ Explorer—An environment for exploring data
■ Experimenter—An environment for performing experiments and comparing dif-

ferent learning algorithms
■ KnowledgeFlow—An environment that’s similar to Explorer but supports drag-

and-drop functionality to carry out the learning process

The Package Documentation link points to the JavaDoc for the WEKA classes, which
we explore later in this section. Next, it’s worthwhile to spend a few minutes exploring
the WEKA GUI application. Start the GUI
application by going to the Start menu of
your window’s computer and selecting the
Weka 3.5 (with console) option in the
Weka 3.5.6 program menu. You should see
a window similar to the one shown in fig-
ure 7.7. Before we jump into the API, you
may want to spend a few minutes playing
with the Explorer application. The
Explorer Guide link shown in figure 7.6 is
a good reference to go through.

 Alternatively, here’s a simple five-step
exercise that you may find useful to explore
the application:

1 Select the Explorer option under the Applications menu to start Explorer.
2 Click on Open File and go to the data directory data. Select the iris.arff dataset.
3 This should open up a window similar to the one in figure 7.8. Note that there

are five attributes shown in the Attributes window, and you can find out the
details about each attribute in the two windows on the right side.

Figure 7.6 WEKA
documentation that’s
available in the install

Figure 7.7 WEKA GUI with options
to start one of four applications

185Using an open source data mining framework: WEKA
4 As shown in figure 7.9, we convert the sepallength variable into a discrete vari-
able. Select the Choose button and then select Discretize Filter, as shown in fig-
ure 7.9. This variable is now a nominal attribute that can take three values.

5 Click the Visualize All option to see a visual representation of the five attributes.

Similarly, spend some time exploring the capabilities of the Experimenter and the
KnowledgeFlow application.

 With that brief overview of the WEKA application, we’re now ready to explore the
WEKA APIs.

Figure 7.8 The
five attributes of
the iris.arff dataset,
with details about
the sepallength
attribute

Figure 7.9 Convert-
ing a continuous vari-
able into a discrete
variable using filters
in WEKA

186 CHAPTER 7 Data mining: process, toolkits, and standards
7.2.2 Understanding the WEKA APIs

In this section, we explore the WEKA APIs. A good introduction to the WEKA JAVA APIs
is the tutorial.pdf file, part of the WEKA installation in the C:\Program Files\Weka-3-5
directory.

 If you use an IDE such as Eclipse, you may also want to add the WEKA source avail-
able in the weka-src.jar file to your Eclipse project.5 The compiled Java classes are in
weka.jar; you’ll want to add the jar file to your project lib file so that Java can find it
at runtime.

 At this stage, it’ll be useful to look at the JavaDoc for the APIs. Click on the Package
Documentation link as shown in figure 7.6. Table 7.3 contains six of the most impor-
tant packages that we use.

The weka.core package contains the representation for a dataset. As shown in fig-
ure 7.10, each dataset is represented by the class Instances, which contains a list of
examples, represented by the class Instance. Each Instance is composed of a num-
ber of attributes. WEKA uses its own implementation for a vector, FastVector.

 To load data from various sources, WEKA defines the Loader interface, as shown in
figure 7.11. This has the following method to create a dataset:

Instances getDataSet() throws IOException;

5 Unzip this jar file in the src/java directory and include the files in your project.

Table 7.3 The key packages in WEKA

Package Description

weka.core Core package containing common components used by other pack-
ages. Classes for modeling attributes, dataset, converters, matrix
manipulation, text parsing, tree representation, and XML.

weka.classifiers Contains implementation of the various classification algorithms.
These include algorithms for numerical prediction.

weka.clusterers Contains implementations of the various clustering algorithms.

weka.attributeselection Algorithms associated with selecting attributes.

weka.associations Algorithms related to finding associations.

weka.filters Classes related to applying filters on the dataset; for example, to
remove an attribute from analysis.

Figure 7.10 A dataset in WEKA
is represented by instances.

187Using an open source data mining framework: WEKA
There are a number of Loader implementations, including reading data from a csv
file and from the database.

 The weka.classifier package contains implementations for classification and
prediction algorithms. As shown in figure 7.12, a Classifier learns its model using
Instances. It then can classify an Instance. The WEKA library contains a large set of
classification and prediction algorithms, some of which are shown in figure 7.12.

 Similarly, the weka.clusterer package contains the implementation for the vari-
ous clustering algorithms. Each Clusterer creates clusters from the Instances and

<<realize>>
<<realize>>

Figure 7.11 Classifer uses
instances to build the model and
classifies an instance.

uses to build

classiffies o..*

Figure 7.12 Classifer uses instances to
build the model and classifies an instance.

188 CHAPTER 7 Data mining: process, toolkits, and standards
then associates an Instance with the appropriate cluster, as shown in figure 7.13. The
figure also shows some of the clustering algorithms that are available.

 The weka.associations package contains two algorithms, Apriori and Predictive-
Apriori, that are available to learn association rules, as shown in figure 7.14. All
association-learning algorithms extend the
Associator interface. CARuleMiner is an
optional interface for those schemes that can
produce class association rules.

 So far, you should have a good under-
standing about the core packages of
WEKA. You’re encouraged to explore other
packages mentioned in table 7.3: weka.

attributeselection and weka.filters.
Now it’s time to write some Java code to dem-
onstrate the learning process. We create a
dataset, build a model, and then evaluate it
using the WEKA API.

7.2.3 Using the WEKA APIs via an example

In this section, we use the WEKA API to create a dataset and build a predictive model
to predict values. There’s also a tutorial on the WEKA wiki.6 We write the code to solve
the following learning problem.

 Imagine that we want to predict the number of times a user is expected to log in
to our application within a week. Unfortunately, we’re still a relatively new company
and we have data for only four users, which is shown in table 7.4. We’ve captured
two attributes during the registration process about the user: age and gender. Age is a

6 http://weka.sourceforge.net/wiki/index.php/Programmatic_Use and http://weka.sourceforge.net/wiki/
index.php/Use_Weka_in_your_Java_code

classiffies

learns from 1..*

0..*

Figure 7.13 Clusterer uses instances to build the model and associate an instance with the
appropriate cluster.

<<realize>> <<realize>>

Figure 7.14 Association-learning algorithms
available in WEKA

http://weka.sourceforge.net/wiki/index.php/Programmatic_Use
http://weka.sourceforge.net/wiki/index.php/Use_Weka_in_your_Java_code
http://weka.sourceforge.net/wiki/index.php/Use_Weka_in_your_Java_code

189Using an open source data mining framework: WEKA
continuous attribute, while gender is a nominal attribute. We know that the learning
dataset is really small, and potentially we may not even find a good predictor, but
we’re keen to try out the WEKA mining APIs, so we go ahead and build the predictive
model in preparation for future better times.

For our example, we do the following five steps:

1 Create the attributes.
2 Create the dataset for learning.
3 Build the predictive model.
4 Evaluate the quality of the model built.
5 Predict the number of logins for a new user.

We implement a class WEKATutorial, which follows these five steps. The code for this
class is shown in listing 7.1.

package com.alag.ci.weka.tutorial;

import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.functions.RBFNetwork;
import weka.core.Attribute;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;

public class WEKATutorial {

 public static void main(String [] args) throws Exception {
 WEKATutorial wekaTut = new WEKATutorial();
 wekaTut.executeWekaTutorial();
 }

 private void executeWekaTutorial() throws Exception {
 FastVector allAttributes = createAttributes();
 Instances learningDataset =
 createLearningDataSet(allAttributes);
 Classifier predictiveModel = learnPredictiveModel(learningDataset);
 Evaluation evaluation = evaluatePredictiveModel(predictiveModel,
 learningDataset);
 System.out.println(evaluation.toSummaryString());
 predictUnknownCases(learningDataset,predictiveModel);
 }

User Age Gender Number of logins

John 20 male 5

Jane 30 female 2

Ed 40 male 3

Amy 35 female 4

Listing 7.1 Implementation of the WEKATutorial

Create attributes

Build
predictive

model

Evaluate
predictive

model

Create dataset
for learning

Predict unknown cases

Table 7.4 The data associated
with the WEKA API tutorial

190 CHAPTER 7 Data mining: process, toolkits, and standards
The main method for our tutorial simply invokes the method executeWekaTutorial(),
which consists of invoking five methods that execute each of the five steps. Let’s look at
the first step, createAttributes(), the code for which is shown in listing 7.2.

 private FastVector createAttributes() {
 Attribute ageAttribute = new Attribute("age");
 FastVector genderAttributeValues = new FastVector(2);
 genderAttributeValues.addElement("male");
 genderAttributeValues.addElement("female");
 Attribute genderAttribute = new Attribute("gender",
 genderAttributeValues);
 Attribute numLoginsAttribute = new Attribute("numLogins");
 FastVector allAttributes = new FastVector(3);
 allAttributes.addElement(ageAttribute);
 allAttributes.addElement(genderAttribute);
 allAttributes.addElement(numLoginsAttribute);
 return allAttributes;
 }

Remember, as shown in figure 7.10, WEKA uses its own implementation, FastVector,
for creating a list of objects. There are two ways to create an Attribute.

 For continuous attributes, such as age, we need to simply pass in the name of the
attribute in the constructor:

Attribute ageAttribute = new Attribute("age");

For nominal attributes, we first need to create a FastVector that contains the various
values that the attribute can take. In the case of attribute gender, we do this with the fol-
lowing code:

 FastVector genderAttributeValues = new FastVector(2);
 genderAttributeValues.addElement("male");
 genderAttributeValues.addElement("female");

The constructor for nominal attributes takes in the name of the attribute and a Fast-
Vector containing the various values that this attribute can take. Therefore, we create
the genderAttribute as follows:

Attribute genderAttribute = new Attribute("gender", genderAttributeValues);

Next, we need to create the dataset for the data contained in table 7.4. A dataset is
represented by Instances, which is composed of a number of Instance. Each
Instance has values associated with each of the attributes. The code for creating the
Instances is shown in listing 7.3.

 private Instances createLearningDataSet(FastVector allAttributes) {
 Instances trainingDataSet =
 new Instances("wekaTutorial", allAttributes, 4);
 trainingDataSet.setClassIndex(2);
 addInstance(trainingDataSet, 20.,"male", 5);
 addInstance(trainingDataSet, 30.,"female", 2);

Listing 7.2 Implementation of the method to create attributes

Listing 7.3 Implementation of the method createLearningDataSet

Create age
attribute

Create
nominal
attribute
for gender

Create
FastVector
for storing
attributes

Specifying attribute
to be predicted

Constructor
for Instances

191Using an open source data mining framework: WEKA
 addInstance(trainingDataSet, 40.,"male", 3);
 addInstance(trainingDataSet, 35.,"female", 4);
 return trainingDataSet;
 }

 private void addInstance(Instances trainingDataSet,
 double age, String gender, int numLogins) {
 Instance instance = createInstance(trainingDataSet,age,
 gender,numLogins);
 trainingDataSet.add(instance);
 }

 private Instance createInstance(Instances associatedDataSet,
 double age, String gender, int numLogins) {
 Instance instance = new Instance(3);
 instance.setDataset(associatedDataSet);
 instance.setValue(0, age);
 instance.setValue(1, gender);
 instance.setValue(2, numLogins);
 return instance;
 }

To create the dataset for our example, we need to create an instance of Instances:

Instances trainingDataSet = new Instances("wekaTutorial",
 allAttributes, 4);

The constructor takes three parameters: the name for the dataset, the FastVector of
attributes, and the expected size for the dataset. The method createInstance cre-
ates an instance of Instance. Note that there needs to be a dataset associated with
each Instance:

instance.setDataset(associatedDataSet);

Now that we’ve created the learning dataset, we’re ready to create a predictive model.
There are a variety of predictive models that we can use; for this example we use the
radial basis function (RBF) neural network. The code for creating the predictive
model is shown in listing 7.4.

 private Classifier learnPredictiveModel(Instances learningDataset)
 throws Exception {
 Classifier classifier = getClassifier();
 classifier.buildClassifier(learningDataset);
 return classifier;
 }

 private Classifier getClassifier() {
 RBFNetwork rbfLearner = new RBFNetwork();
 rbfLearner.setNumClusters(2);
 return rbfLearner;
 }

The constructor for creating the RBF is fairly simple:

 RBFNetwork rbfLearner = new RBFNetwork();

Listing 7.4 Creating the predictive model

Creating an
Instance

Create Classifier to be used
Build predictive
model using
learning dataset

Set number
of clusters

192 CHAPTER 7 Data mining: process, toolkits, and standards
We go with the default parameters associated with RBF learning, except we set the
number of clusters to be used to 2:

rbfLearner.setNumClusters(2);

Once we have an instance of a classifier, it’s simple enough to build the predictive model:

 Classifier classifier = getClassifier();
 classifier.buildClassifier(learningDataset);

Having built the predictive model, we need to evaluate its quality. To do so we typically
use another set of data, commonly known as test dataset; we iterate over all instances
and compare the predicted value with the expected value. The code for this is shown
in listing 7.5.

 private Evaluation evaluatePredictiveModel(Classifier classifier,
 Instances learningDataset) throws Exception {
 Evaluation learningSetEvaluation =
 new Evaluation(learningDataset);
 learningSetEvaluation.evaluateModel(classifier,
 learningDataset);
 return learningSetEvaluation;
 }

Evaluating the quality of the model built is fairly straightforward. We simply need to
create an instance of an Evaluation object and pass in the classifier for evaluation:

Evaluation learningSetEvaluation = new Evaluation(learningDataset);
 learningSetEvaluation.evaluateModel(classifier, learningDataset);

Lastly, we use the predictive model for predicting the number of logins for previously
unknown cases. The code is shown in listing 7.6.

 private void predictUnknownCases(Instances learningDataset,
 Classifier predictiveModel)
 throws Exception {
 Instance testMaleInstance =
 createInstance(learningDataset,32., "male", 0) ;
 Instance testFemaleInstance =
 createInstance(learningDataset,32., "female", 0) ;
 double malePrediction =
 predictiveModel.classifyInstance(testMaleInstance);
 double femalePrediction =
 predictiveModel.classifyInstance(testFemaleInstance);
 System.out.println("Predicted number of logins [age=32]: ");
 System.out.println("\tMale = " + malePrediction);
 System.out.println("\tFemale = " + femalePrediction);
 }

Listing 7.5 Evaluating the quality and predicting the number of logins

Listing 7.6 Predicting the number of logins

Create Evaluation
object

Evaluate the
quality

Create
Instance

Pass
Instance to
model for
prediction

193Standard data mining API: Java Data Mining (JDM)
We try to predict the number of logins for two users. The first user is a 32-year-old
male; the second is a 32-year-old female. Listing 7.7 shows the output from running
the program.

Correlation coefficient 0.4528
Mean absolute error 0.9968
Root mean squared error 0.9968
Relative absolute error 99.6764 %
Root relative squared error 89.16 %
Total Number of Instances 4

Predicted number of logins [age=32]:
 Male = 3.3578194529075382
 Female = 2.9503429358320865

Listing 7.7 shows the details of how well the predicted model performed for the
training data. As shown, the correlation coefficient7 measures the quality of the pre-
diction; for a perfect fit, this value will be 1. The predicted model shows an error of
about 1.

 The model predicts that the 32-year-old male is expected to log in 3.35 times, while
the 32-year-old female is expected to log in 2.95 times. Using the data presented to the
model, the model predicts that male users are more likely to log in than female users.

 This example has been helpful in understanding the WEKA APIs. It also brings out
an important issue: the example we implemented makes our application highly
dependent on WEKA. For example, the WEKA APIs use FastVector instead of perhaps
a List to contain objects. What if tomorrow we wanted to switch to a different vendor
or implementation? Switching to a different vendor implementation at that point
would be painful and time consuming. Wouldn’t it be nice if there were a standard
data mining API, which different vendors implemented? This would make it easy for a
developer to understand the core APIs and if needed easily switch to a different imple-
mentation of the specification with simple changes, if any, in the code. This is where
the Java Data Mining (JDM) specification developed under Java Community Process
JSR 73 and JSR 247 comes in.

7.3 Standard data mining API: Java Data Mining (JDM)
JDM aims at building a standard API for data mining, such that client applications coded
to the specification aren’t dependent on any specific vendor application. The JDBC spec-
ification provides a good analogy to the potential of JDM. The promise is that just like
it’s fairly easy to access different databases using JDBC, in the same manner, applications
written to the JDM specification should make it simple to switch between different imple-
mentations of data mining functions. JDM has wide support from the industry, with rep-
resentations from a number of companies including Oracle, IBM, SPSS, CA, Fair Isaac,

Listing 7.7 The output from the main method

7 See http://mathworld.wolfram.com/CorrelationCoefficient.html for more details.

http://mathworld.wolfram.com/CorrelationCoefficient.html

194 CHAPTER 7 Data mining: process, toolkits, and standards
SAP, SAS, BEA, and others. Oracle8 and KXEN9 have implementations compliant with the
JDM specification as of early 2008. It’s only a matter of time before other vendors and
data mining toolkits adopt the specification.

 Work on JSR 7310 began in July 2000, with the final release in August 2004. JDM
supports the five different types of algorithms we looked at in section 7.1: clustering,
classification, regression, attribute importance, and association rules. It also supports
common data mining operations such as building, evaluating, applying, and saving a
model. It defines XML Schema for representing models as well as accessing data min-
ing capabilities from a web service.

 JSR 247,11 commonly known as JDM 2.0, addresses features that were deferred from
JDM 1.0. Some of the features JSR 247 addresses are multivariate statistics, time series
analysis, anomaly detection, transformations, text mining, multi-target models, and
model comparisons. Work on the project started in June 2004, and the public review
draft was approved in December 2006.

 If you’re interested in the details of JDM, I encourage you to download and read
the two specifications—they’re well written and easy to follow. You should also look
at a recent well-written book12 by Mark Hornick, the specification lead for the two
JSRs on data mining and JDM. He coauthored the book with two other members
of the specification committee, Erik Marcadé, from KXEN, and Sunil Venkayala
from Oracle.

 Next, we briefly look at the JDM architecture and the core components of the API.
Toward the end of the section, we write code that demonstrates how a connection can
be made to a data mining engine using the JDM APIs. In later chapters, when we dis-
cuss clustering, predictive models, and other algorithms, we review relevant sections
of the JDM API in more detail.

7.3.1 JDM architecture

The JDM architecture has the following three logical components. These components
could be either collocated or distributed on different machines:

1 The API: The programming interface that’s used by the client. It shields the cli-
ent from knowing about any vendor-specific implementations.

2 The Data Mining Engine (DME): The engine that provides data mining func-
tionality to the client.

3 Mining object repository (MOR): The repository to store the data mining
objects.

All packages in JDM begin with javax.datamining. There are several key packages,
which are shown in table 7.5.

8 http://www.oracle.com/technology/products/bi/odm/odm_jdev_extension.html
9 http://kxen.com/products/analytic_framework/apis.php
10 http://www.jcp.org/en/jsr/detail?id=73
11 http://www.jcp.org/en/jsr/detail?id=247
12 Java Data Mining: Strategy, Standard, and Practice, 2007, Morgan Kaufmann.

http://www.oracle.com/technology/products/bi/odm/odm_jdev_extension.html
http://kxen.com/products/analytic_framework/apis.php
http://www.jcp.org/en/jsr/detail?id=73
http://www.jcp.org/en/jsr/detail?id=247

195Standard data mining API: Java Data Mining (JDM)
Next, let’s take a deeper look at some of the key JDM objects.

7.3.2 Key JDM objects

The MiningObject is a top-level interface for JDM classes. It has basic information
such as a name and description, and can be saved in the MOR by the DME. JDM has the
following types of MiningObject, as shown in figure 7.15.

■ Classes associated with describing the input data, including both the physical
(PhysicalDataSet) and logical (LogicalDataSet) aspects of the data.

■ Classes associated with settings. There are two kinds of settings, first related to
setting for the algorithm. AlgorithmSettings is the base class for specifying the
setting associated with an algorithm. Second is the high-level specification for
building a data mining model. BuildSettings is the base implementation for
the five different kinds of models: association, clustering, regression, classifica-
tion, and attribute importance.

Table 7.5 Key JDM packages

Concept Packages Comments

Common
objects used
throughout

Javax.datamining Contains common objects such as
MiningObject, Factory that are
used throughout the JDM packages

Top-level
objects used in
other packages

Javax.datamining.base Contains top-level interfaces such as
Task, Model, BuildSettings,
AlgorithmSettings. Also
introduced to avoid cyclic package
dependencies

Algorithms-
related
packages

Javax.datamining.algorithm
Javax.datamining.association
Javax.datamining.attributeimportance
Javax.datamining.clustering
Javax.datamining.supervised
Javax.datamining.rule

Contains interfaces associated with the
different types of algorithms, namely:
association, attribute importance, clus-
tering, supervised learning—includes
both classification and categorization.
Also contains Java interfaces represent-
ing the predicate rules created as part
of the models, such as tree model.

Connecting to
the data min-
ing engine

Javax.datamining.resource Contains classes associated with con-
necting to a data mining engine (DME)
and metadata associated with the DME.

Data-related
packages

Javax.datamining.data
Javax.datamining.statistics

Contains classes associated with repre-
senting both a physical and logical data-
set and statistics associated with the
input mining data.

Models and
tasks

Javax.datamining.task
Javax.datamining.modeldetail

Contains classes for the different types
of tasks: build, evaluate, import and
export.
Provides detail on the various model
representations.

196 CHAPTER 7 Data mining: process, toolkits, and standards
■ Model is the base class for mining models created by analyzing the data. There
are five different kinds of models: association, clustering, regression, classifica-
tion, and attribute importance.

■ Task is the base class for the different kinds of data mining operations, such as
applying, testing, importing, and exporting a model.

We look at each of these in more detail in the next few sections. Let’s begin with rep-
resenting the dataset.

7.3.3 Representing the dataset

JDM has different interfaces to describe the physical and logical aspects of the data, as
shown in figure 7.16. PhysicalDataset is an interface to describe input data used for
data mining, while LogicalData is used to represent the data used for model input.
Attributes of the PhysicalDataset, represented by PhysicalAttribute, are mapped to
attributes of the LogicalData, which is represented by LogicalAttribute. The separa-
tion of physical and logical data enables us to map multiple PhysicalDatasets into one
LogicalData for building a model. One PhysicalDataset can also translate to multi-
ple LogicalData objects with variations in the mappings or definitions of the attributes.

 Each PhysicalDataset is composed of zero or more PhysicalAttributes. An
instance of the PhysicalAttribute is created through the PhysicalAttributeFactory.
Each PhysicalAttribute has an AttributeDataType, which is an enumeration and
contains one of the values {double, integer, string, unknown}. The PhysicalAttribute
also has a PhysicalAttributeRole; another enumeration is used to define special roles
that some attributes may have. For example, taxonomyParentId represents a column of
data that contains the parent identifiers for a taxonomy.

Figure 7.15 Key JDM objects

197Standard data mining API: Java Data Mining (JDM)
LogicalData is composed of one or more LogicalAttributes. Each Logical-
Attribute is created by the LogicalAttributeFactory and has an associated Attrib-
uteType. Each AttributeType is an enumeration with values {numerical, categorical,
ordinal, not specified}. Associated with a LogicalAttribute is also a DataPreparation-
Status, which specifies whether the data is prepared or unprepared. For categorical
attributes, there’s also an associated CategorySet, which specifies the set of categorical
values associated with the LogicalAttribute.

 Now that we know how to represent a dataset, let’s look at how models are repre-
sented in the JDM.

7.3.4 Learning models

The output of a data mining algorithm is represented by the Model interface. Model,
which extends MiningObject, is the base class for representing the five different kinds
of data mining models, as shown in figure 7.17. Each model may have an associ-
ated ModelDetail, which captures algorithm-specific implementations. For example,
NeuralNetworkModelDetail in the case of a neural network model captures the
detailed representation of a fully connected, MLP network model. Similarly, Tree-
ModelDetail contains model details for a decision tree, and contains methods to tra-
verse the tree and get information related to the decision tree. To keep figure 7.17
simple, the subclasses of ModelDetail are omitted.

 Table 7.6 shows the six subclasses of the Model interface. Note that Supervised-
Model acts as a base interface for both ClassificationModel and RegressionModel.

 So far, we’ve looked at how to represent the data and the kinds of model represen-
tation. Next, let’s look at how settings are set for the different kinds of algorithms.

Figure 7.16 Key JDM interfaces to describe the physical and logical aspects of the data

198 CHAPTER 7 Data mining: process, toolkits, and standards
Table 7.6 Key subclasses for Model

Model type Description

AssociationModel Model created by an association algorithm. It contains data asso-
ciated with itemsets and rules.

AttributeImportanceModel Ranks the attributes analyzed. Each attribute has a weight associ-
ated with it, which can be used as an input for building a model.

Clustering Model Represents the output from a clustering algorithm. Contains infor-
mation to describe the clusters and associate a point with the
appropriate cluster.

SupervisedModel Is a common interface for supervised learning–related models.

ClassificationModel Represents the model created by a classification algorithm.

RegressionModel Represents the model created by a regression algorithm.

Figure 7.17 The model representation in JDM

199Standard data mining API: Java Data Mining (JDM)
7.3.5 Algorithm settings

AlgorithmSettings, as shown in figure 7.18, is the common base class for specifying
the settings associated with the various algorithms. A DME will typically use defaults for
the settings and then use the specified settings to override the defaults.

Each specific kind of algorithm typically has its own interface to capture the settings.
For example, KMeansSettings captures the settings associated with the k-means algo-
rithm. This interface specifies settings such as the number of clusters, the maximum
number of iterations, the distance function to be used, and the error tolerance range.

 So far in this section, we’ve looked at the JDM objects for representing the dataset,
the learning models, and the settings for the algorithms. Next, let’s look at the differ-
ent kinds of tasks that are supported by the JDM.

7.3.6 JDM tasks

There are five main types of tasks in JDM. These are tasks associated with building a
model, evaluating a model, computing statistics, applying a model, and importing and
exporting models from the MOR. Figure 7.19 shows the interfaces for some of the
tasks in JDM. Tasks can be executed either synchronously or asynchronously. Some of
the tasks associated with data mining, such as learning the model and evaluating a

Figure 7.18 The settings associated with the different kinds of algorithms

200 CHAPTER 7 Data mining: process, toolkits, and standards
large dataset, take a long time to run. JDM supports specifying these as asynchronous
tasks and monitoring the status associated with them.

 The Task interface is an abstraction of the metadata needed to define a data-mining
task. The task of applying a mining model to data is captured by ApplyTask. DataSet-
ApplyTask is used to apply the model to a dataset, while RecodApplyTask is used to apply
the mining model to a single record. ExportTask and ImportTask are used to export
and import mining models from the MOR.

 Task objects can be referenced, reexecuted, or executed at a later time. DME
doesn’t allow two tasks to be executed with the same name, but a task that has com-
pleted can be re-executed if required. Tasks executed asynchronously provide a refer-
ence to an ExecutionHandle. Clients can monitor and control the execution of the
task using the ExecutionHandle object.

 Next, we look at the details of clients connecting to the DME and the use of Execu-
tionHandle to monitor the status.

7.3.7 JDM connection

JDM allows clients to connect to the DME using vendor-neutral connection architec-
ture. This architecture is based on the principles of Java Connection Architecture
(JCX). Figure 7.20 shows the key interfaces associated with this process.

Figure 7.19 The interfaces associated with the various tasks supported by JDM

201Standard data mining API: Java Data Mining (JDM)
The client code looks up an instance of ConnectionFactory, perhaps using JNDI, and
specifies a user name and password to the ConnectionFactory. The Connection-
Factory creates Connection objects, which are expected to be single-threaded and are
analogous to the Connection objects created while accessing the database using the
JDBC protocol. The ConnectionSpec associated with the ConnectionFactory contains
details about the DME name, URI, locale, and the user name and password to be used.

 A Connection object encapsulates a connection to the DME. It authenticates users,
supports the retrieval and storage of named objects, and executes tasks. Each Connec-
tion object is a relatively heavyweight JDM object and needs to be associated with a
single thread. Clients can access the DME via either a single Connection object or via
multiple instances. Version specification for the implementation is captured in the
ConnectionMetaData object.

 The Connection interface has two methods available to execute a task. The first
one is used for synchronous tasks and returns an ExecutionStatus object:

public ExecutionStatus execute(Task task, java.lang.Long timeout)
 throws JDMException

The other one is for asynchronous execution:

public ExecutionHandle execute(java.lang.String taskName)
 throws JDMException

It returns a reference to an ExecutionHandle, which can be used to monitor the task’s
status. The Connection object also has methods to look for mining objects, such as the
following, which looks for mining objects of the specified type that were created in a
specified time period:

public java.util.Collection getObjectNames(java.util.Date createdAfter,
 java.util.Date createdBefore,
 NamedObject objectType) throws JDMException

Figure 7.20 The interfaces associated with creating a Connection to the data-mining service

202 CHAPTER 7 Data mining: process, toolkits, and standards
With this overview of the connection process, let’s look at some sample code that can
be used to connect to the DME.

7.3.8 Sample code for accessing DME

It’s now time to write some code to illustrate how the JDM APIs can be used to create a
Connection to the DME. The first part of the code deals with the constructor and the
main method, which calls the method to create a new connection. This is shown in
listing 7.8.

package com.alag.ci.jdm.connect;

import java.util.Hashtable;

import javax.datamining.JDMException;
import javax.datamining.resource.Connection;
import javax.datamining.resource.ConnectionFactory;
import javax.datamining.resource.ConnectionSpec;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public class JDMConnectionExample {
 private String userName = null;
 private String password = null;
 private String serverURI = null;
 private String providerURI = null;

 public JDMConnectionExample(String userName, String password,
 String serverURI, String providerURI) {
 this.userName = userName;
 this.password = password;
 this.serverURI = serverURI;
 this.providerURI = providerURI;
 }

 public static void main(String [] args) throws Exception {
 JDMConnectionExample eg = new JDMConnectionExample("username",
 "password", "serverURI",
 "http://yourHost:yourPort/yourDMService");
 Connection connection = eg.createANewConnection();
 }

In our example, we use a JDMConnectionExample object to create a new instance of
the Connection object. The constructor for JDMConnectionExample takes in four
parameters: the username and password for the DME, the URI for the DME server, and
the URI for the provider. Sample values are shown in the main method. The main
method creates a Connection object with the following call:

Connection connection = eg.createANewConnection();

There are three steps involved in getting a new Connection, as shown in listing 7.9.

Listing 7.8 Constructor and main method for JDMConnectionExample

Constructor for
JDMConnectionExample

Get connection using
JDMConnectionExample

instance

203Standard data mining API: Java Data Mining (JDM)
 public Connection createANewConnection()
 throws JDMException, NamingException {
 ConnectionFactory connectionFactory = createConnectionFactory();
 ConnectionSpec connectionSpec =
 getConnectionSpec(connectionFactory);
 return connectionFactory.getConnection(connectionSpec);
 }

First, we need to create an instance of the ConnectionFactory. Next, we need to
obtain a ConnectionSpec from the ConnectionFactory, populate it with the creden-
tials, and then create a new Connection from the ConnectionFactory using the Con-
nectionSpec.

 Listing 7.10 contains the remaining part of the code for this example, and deals
with creating the connection factory and the initial context.

 private ConnectionFactory createConnectionFactory()
 throws NamingException {
 InitialContext initialJNDIContext = createInitialContext();
 return (ConnectionFactory) initialJNDIContext.lookup("java:com/env/

jdm/yourDMServer");
 }

 private InitialContext createInitialContext() throws NamingException {
 Hashtable<String,String> environment=
 new Hashtable<String,String>();
 environment.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.your-company.javax.datamining.resource.initialContextFactory-impl");
 environment.put(Context.PROVIDER_URL, this.providerURI);
 environment.put(Context.SECURITY_PRINCIPAL, this.userName);
 environment.put(Context.SECURITY_CREDENTIALS, this.password);
 return new InitialContext(environment);
 }

 private ConnectionSpec getConnectionSpec(
 ConnectionFactory connectionFactory) {
 ConnectionSpec connectionSpec =
 connectionFactory.getConnectionSpec();
 connectionSpec.setName(this.userName);
 connectionSpec.setPassword(this.password);
 connectionSpec.setURI(this.serverURI);
 return connectionSpec;
 }

To get the ConnectionFactory, we first need to create the InitialContext for the
JNDI lookup. The constructor for InitialContext takes a Hashtable, and we set the
provider URL, username, and password for the lookup. Here the code

(ConnectionFactory) initialJNDIContext.lookup(
 "java:com/env/jdm/yourDMServer");

Listing 7.9 Creating a new connection in the JDMConnectionExample

Listing 7.10 Getting a ConnectionFactory and ConnectionSpec

Get ConnectionSpec

Create ConnectionFactory

 Create InitialContext
for JNDI lookup

Environment
variables set
in Hashtable

Get ConnectionSpec
from ConnectionFactory

204 CHAPTER 7 Data mining: process, toolkits, and standards
provides access to the ConnectionFactory. We get access to the ConnectionSpec with

ConnectionSpec connectionSpec = connectionFactory.getConnectionSpec();

The ConnectionSpec object is populated with the serverURI, the name, and password
credentials, and a new Connection object is created from the ConnectionFactory by
the following code:

connectionFactory.getConnection(connectionSpec);

Once you have a Connection object, you can execute the different types of Tasks that
are available, per the JDM specification. This completes our JDM example and a brief
overview of the JDM architecture and the key APIs. Before we end this chapter, it’s use-
ful to briefly discuss how JDM fits in with PMML, an XML standard for representing
data mining models.

7.3.9 JDM models and PMML

Predictive Model Markup Language (PMML) is an XML standard developed by the Data
Mining Group13 (DMG) to represent predictive models. There’s wide support among
the vendors to import and/or export PMML models. But PMML doesn’t specify the set-
tings used to create the model, so there may be some loss of information when JDM
models are converted to PMML format and vice versa; this is dependent on each ven-
dor’s JDM model implementation. PMML does contain adequate information to apply
and test the model. PMML models map readily to JDM. JDM also influenced certain
aspects of the PMML 2.0 release.

7.4 Summary
Data mining is the automated process of analyzing data to discover previously
unknown patterns and create predictive models. Mining algorithms need test data in
order to learn. A dataset is composed of a number of examples. Each example consists
of values for a set of attributes. An attribute can be continuous or discrete. Discrete
values that have an ordering associated with them are known as ordinal, while those
that don’t have any ordering are called nominal.

 There are five major types of mining algorithms:

■ Attribute importance —Ranks the available attributes in terms of importance for
predicting the output variable

■ Association rules —Finds interesting relationships in data by looking at co-occur-
ring items

■ Clustering —Finds clusters of similar data points
■ Regression —Predicts the value of the output variable based on the input

attributes
■ Classification —Classifies a discrete attribute into one of enumerated value

13 http://www.dmg.org/

http://www.dmg.org/

205Resources
Writing mining algorithms is complex. Fortunately, there are a few open source data
mining platforms that one can use. WEKA is perhaps the most commonly used Java-
based open source data mining platform. WEKA includes all the five different types of
learning algorithms along with APIs to represent and manipulate the data.

 You don’t want to tie your application code with a specific vendor implementation
of data mining algorithms. Java Data Mining (JDM) is a specification developed under
Java Community Process JSR 73 and JSR 247. JDM aims at providing a set of vendor-
neutral APIs for accessing and using a data-mining engine. There are couple of data-
mining engines that are compliant with the JDM specification, and it’s expected that
more companies will implement it in the future.

 With this background, you should have a basic understanding of the data mining
process; the algorithms; WEKA, the open source data mining toolkit; and JDM, the Java
Data Mining standard.

 For the learning process, we need a dataset. In the next chapter, chapter 8, we
build a text analysis toolkit, which enables us to convert unstructured text into a for-
mat that can be used by the learning algorithms. We take a more detailed look at some
of the data-mining algorithms, especially those associated with clustering and predic-
tive models in chapter 9 and chapter 10.

7.5 Resources
 Burges, Christopher J. C. “A tutorial on support vector machines for pattern recognition.”

1998. Data Mining and Knowledge Discovery. http://www.umiacs.umd.edu/~joseph/
support-vector-machines4.pdf

 “Familiarize yourself with data mining functions and algorithms.” 2007. JavaWorld. http://
www.javaworld.com/javaworld/jw-02-2007/jw-02-jdm.html?page=2

 Hornick, Mark, Erik Marcadé, and Sunil Venkayala. Java Data Mining: Strategy, Standard, and
Practice. 2007. Morgan Kaufmann.

 Java Data Mining API 1.0. JSR 73. http://www.jcp.org/en/jsr/detail?id=73
 Java Data Mining API 2.0. JSR 247. http://www.jcp.org/en/jsr/detail?id=247
 Jose, Benoy. “The Java Data Mining API.” Java Boutique. http://javaboutique.internet.com/

articles/mining_java/
 Moore, Andrew. “Statistical Data Mining Algorithms.” http://www.autonlab.org/tutorials/
 Sommers, Frank. “Mine Your Own Data with the JDM API.” 2005. -http://www.artima.com/

lejava/articles/data_mining.html
 Tan, Pang-Ning, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining. 2006.
 “Use Weka in your Java Code.” http://weka.sourceforge.net/wiki/index.php/

Use_Weka_in_your_Java_code
 Vapnik, Vladimir. Statistical Learning Theory. 1998. Wiley Science.
 Venkayala, Sunil. “Using Java Data Mining to Develop Advanced Analytics Applications: The

predictive capabilities of enterprise Java apps.” Java Developer Journal, http://
jdj.sys-con.com/read/49091.htm

 Witten, Ian H. and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques, 2nd
Edition. 2005. Morgan Kaufmann, San Francisco.

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.javaworld.com/javaworld/jw-02-2007/jw-02-jdm.html?page=2
http://www.javaworld.com/javaworld/jw-02-2007/jw-02-jdm.html?page=2
http://www.jcp.org/en/jsr/detail?id=73
http://www.jcp.org/en/jsr/detail?id=247
http://javaboutique.internet.com/articles/mining_java/
http://javaboutique.internet.com/articles/mining_java/
http://www.autonlab.org/tutorials/
http://www.artima.com/lejava/articles/data_mining.html
http://www.artima.com/lejava/articles/data_mining.html
http://weka.sourceforge.net/wiki/index.php/Use_Weka_in_your_Java_code
http://weka.sourceforge.net/wiki/index.php/Use_Weka_in_your_Java_code
http://jdj.sys-con.com/read/49091.htm
http://jdj.sys-con.com/read/49091.htm

Building
 a text analysis toolkit
It’s now common for most applications to leverage user-generated-content (UGC).
Users may generate content through one of many ways: writing blog entries, send-
ing messages to others, answering or posing questions on message boards, through
journal entries, or by creating a list of related items. In chapter 3, we looked at the
use of tagging to represent metadata associated with content. We mentioned that
tags can also be detected by automated algorithm.

 In this chapter, we build a toolkit to analyze content. This toolkit will enable us
to extract tags and their associated weights to build a term-vector representation
for the text. The term vector representation can be used to

This chapter covers
■ A brief introduction to Lucene
■ Understanding tokenizers, TokenStream, and

analyzers
■ Building an analyzer to detect phrases and

inject synonyms
■ Use cases for leveraging the infrastructure
206

207Building the text analyzers
■ Build metadata about the user as described in chapter 2
■ Create tag clouds as shown in chapter 3
■ Mine the data to create clusters of similar documents as shown in chapter 9
■ Build predictive models as shown in chapter 10
■ Form a basis for understanding search as used in chapter 11
■ Form a basis for developing a content-based recommendation engine as shown

in chapter 12
As a precursor to this chapter, you may want to review sections 2.2.3, 3.1–3.2, and 4.3.
The emphasis of this chapter is in implementation, and at the end of the chapter we’ll
have the tools to analyze text as described in section 4.3. We leverage Apache Lucene
to use its text-parsing infrastructure. Lucene is a Java-based open source search engine
developed by Doug Cutting. Nutch, which we looked at in chapter 6, is also based on
Lucene. We begin with building a text-parsing infrastructure that supports the use of
stop words, synonyms, and a phrase dictionary. Next, we implement the term vector
with capabilities to add and compute similarities with other term vectors. We insulate
our infrastructure from using any of Lucene’s specific classes in its interfaces, so that
in the future if you want to use a different text-parsing infrastructure, you won’t have
to change your core classes. This chapter is a good precursor to chapter 11, which is
on intelligent search.

8.1 Building the text analyzers
This section deals with analyzing content—taking a piece of text and converting it
into tags. Tags may contain a single term or multiple terms, known as phrases. In this
section, we build the Java code to intelligently process text as illustrated in section 4.3.
This framework is the foundation for dealing with unstructured text and converting it
into a format that can be used by various algorithms, as we’ll see in the remaining
chapters of this book. At the end of this section, we develop the tools required to con-
vert text into a list of tags.

 In section 2.2.3, we looked at the typical steps involved in text analysis, which are
shown in figure 8.1:

1 Tokenize — Parsing the text to generate terms. Sophisticated analyzers can also
extract phrases from the text.

2 Normalize — Converting text to lowercase.
3 Eliminate stop words — Eliminating terms that appear very often.
4 Stem — Converting the terms into their stemmed form; removing plurals.

At this point, it’s useful to look at the example in section 4.3, where we went through
the various steps involved with analyzing text. We used a simple blog entry consisting of
a title and a body to demonstrate analyzing text. We use the same example in this chapter.

Tokenization Normalize Eliminate
Stop Words Stemming Figure 8.1 Typical steps

involved in analyzing text

208 CHAPTER 8 Building a text analysis toolkit
Figure 8.2, which shows a typical web page with a blog
entry in the center of the page, demonstrates the
applicability of the framework developed in this
chapter. The figure consists of five main sections:

1 Main context —The blog entry with the title
and body is at the center of the page.

2 Related articles —This section contains other
related articles that are relevant to the user
and to the blog entry in the first section. We
develop this in chapter 12.

3 Relevant ads —This section shows advertise-
ments that are relevant to the user and to the
context in the first section. Tags extracted
from the main context and the user’s past
behavior are used to show relevant advertisements.

4 Tag cloud visualization—This section shows a tag cloud representation of the tags
of interest to the user. This tag cloud (see chapter 3) can be generated by ana-
lyzing the pages visited by the user in the past.

5 Search box— Most applications have a search box that allows users to search for
content using keywords. The main content of the page—the blog entry—is
indexed for retrieval via a search engine, as shown in chapter 11.

First, we need some classes that can parse text. We use Apache Lucene.

8.1.1 Leveraging Lucene

Apache Lucene1 is an open source Java-based full-text search engine. In this chapter,
we use the analyzers that are available with Lucene. For more on Lucene, Manning
has an excellent book, Lucene in Action, by Gospodnetic and Hatcher. You’ll find the
material in chapter 4 of the book to be particularly helpful for this section.

 Lucene can be freely downloaded at http://www.apache.org/dyn/closer.cgi/
lucene/java/. Download the appropriate file based on your operating system. For
example, I downloaded lucene-2.2.0-src.zip, which contains the Lucene 2.2.0 source,
and lucene-2.2.0.zip, which contains the compiled classes. Unzip this file and make
sure that lucene-core-2.2.0.jar is in your Java classpath. We use this for our analysis.

 The first part of the text analysis process is tokenization—converting text into
tokens. For this we need to look at Lucene classes in the package org.apache.
lucene.analysis.
KEY LUCENE TEXT-PARSING CLASSES

In this section, we look at the key classes that are used by Lucene to parse text. Fig-
ure 8.3 shows the key classes in the analysis package of Lucene. Remember, our aim
is to convert text into a series of terms. We also briefly review the five classes that are
shown in figure 8.3. Later, we use these classes to write our own text analyzers.

1 http://lucene.apache.org/

3.
Relevant

Ads

2. Related Articles

4. Tag
Cloud

Web2.0 is all about connecting
users to users, inviting users to
participate and applying their
collective intelligence to improve the
application. Collective intelligence
enhances the user experience

5. Search Box

Figure 8.2 Example of how the tools
developed in this chapter can be
leveraged in your application

http://www.apache.org/dyn/closer.cgi/lucene/java/
http://www.apache.org/dyn/closer.cgi/lucene/java/
http://lucene.apache.org/

209Building the text analyzers
An Analyzer is an abstract class that takes in a java.io.Reader and creates a Token-
Stream. For doing this, an Analyzer has the following method:

public abstract TokenStream tokenStream(String fieldName, Reader reader);

The abstract class TokenStream creates an enumeration of Token objects. Each Token-
izer implements the method:

public Token next() throws IOException;

A Token represents a term occurring in the text.
 There are two abstract subclasses for TokenStream. First is Tokenizer, which deals

with processing text at the character level. The input to a Tokenizer is a
java.io.Reader. The abstract Tokenizer class has two protected constructors. The
first is a no-argument constructor; the second takes a Reader object. All subclasses of a
Tokenizer have a public constructor that invokes the protected constructor for the
parent Tokenizer class, passing in a Reader object:

protected abstract Tokenizer(Reader input)

The second subclass of TokenStream is TokenFilter. A TokenFilter deals with words,
and its input is another TokenStream, which could be another TokenFilter or a
Tokenizer. There’s only one constructor in a TokenFilter, which is protected and has
to be invoked by the subclasses:

protected TokenFilter(TokenStream input)

The composition link from a TokenFilter (see the black diamond in figure 8.3) to a
TokenStream in figure 8.3 indicates that token filters can be chained. A TokenFilter
follows the composite design pattern and forms a “has a” relationship with another
TokenStream.

 Table 8.1 summarizes the five classes that we have discussed so far.
 Next, we need to look at some of the concrete implementations of these classes.

Table 8.1 Common terms used to describe attributes

Class Description

Token Represents a term occurring in the text, with positional information of where it
occurs in the text.

Analyzer Abstract class for converting text in a java.io.Reader into TokenStream.

TokenStream An abstract class that enumerates a sequence of tokens from a text.

Figure 8.3 Key classes in the
Lucene analysis package

210 CHAPTER 8 Building a text analysis toolkit
LUCENE TOKENIZERS, FILTERS, AND ANALYZERS

In this section, we look at the available implementations for tokenizers, token fil-
ters and analyzers from Lucene. We’ll leverage these when we develop our own
analyzers.

 First let’s look at the concrete implementations of Tokenizer provided by
Lucene. As shown in figure 8.3, we’re currently interested in five of the available
tokenizers. These are shown in table 8.2, which should give you a good flavor of
available tokenizers. Of course, it’s simple enough to extend any of these Tokeniz-
ers. Either a StandardTokenizer or a LowercaseTokenizer should work well for
most applications.

Next, let’s look at the available set of TokenFilters, which is shown in figure 8.4.
Table 8.3 contains details about a few of them.

 Of particular importance to us is the StopFilter, which we use for adding stop
words, and the PorterStemFilter, which we use to stem words. Note that there are
language-specific filters, for example, the RussianLowerCaseFilter and Russian-
StemFilter for the Russian language, and the GermanStemFilter for German words.

Tokenizer A TokenStream that tokenizes the input from a Reader. It deals with individual
characters.

TokenFilter A TokenStream whose input is another TokenStream. It deals with words.

Table 8.2 Available tokenizers from Lucene

Tokenizer Details

StandardTokenizer Tokenizer for most European languages.
Removes punctuation and splits words at punctuation. But if a dot
isn’t followed by white space, it’s considered part of the token.
Splits words at hyphens unless there’s a number, in which case the
whole token isn’t split.
Recognizes Internet host names and email addresses.

CharTokenizer An abstract base class for character-oriented simple Tokenizers.

WhitespaceTokenizer Divides text at white spaces.

LetterTokenizer Divides text at non-letters. Works well for European languages but
not for Asian languages, where words aren’t separated by spaces.

LowerCaseTokenizer Converts text into lowercase and divides text into non-words.

RussianLetterTokenizer Extends LetterTokenizer by additionally looking up letters in a
given “Russian charset.”

Table 8.1 Common terms used to describe attributes (continued)

Class Description

211Building the text analyzers
Lastly, let’s look at some of the analyzers that are available from Lucene. Figure 8.5
shows some of the Analyzer classes available to us.

Table 8.4 contains the details about each of the available analyzers.

Table 8.3 Available filters from Lucene

TokenFilter Details

StandardFilter Normalizes tokens by removing s, S, and periods. Works in conjunc-
tion with a StandardTokenizer.

LowerCaseFilter Normalizes the token text to lowercase.

StopFilter Removes words that appear in the provided stop word list from the
token stream.

PorterStemFilter Stems the token using the Porter stemming algorithm. Tokens are
expected to be lowercase.

RussianLowerCaseFilter Converts text into lowercase using a Russian charset.

RussianStemFilter Stems Russian words, which are expected to be lowercase.

GermanStemFilter A stem filter for German words.

Figure 8.4 Some of the concrete implementations for Tokenizer and TokenFilter

212 CHAPTER 8 Building a text analysis toolkit
At this stage, we’re done with Lucene classes. We build on what we’ve learned so far in
this chapter by leveraging the available Lucene analyzers and token filters to write two
custom Analyzers:

1 PorterStemStopWordAnalyzer: A custom analyzer that normalizes tokens; it
uses stop words and Porter stemming.

2 SynonymPhraseStopWordAnalyzer: An analyzer that injects synonyms and
detects phrases. It uses a custom TokenFilter that we’ll build: the Synonym-
PhraseStopWordFilter.

Figure 8.6 shows the class diagram for the two analyzers and token filter that we build
next.

 We next look at implementing the PorterStemStopWordAnalyzer.

Table 8.4 Common Analyzer classes that are available in Lucene

Analyzer Details

SimpleAnalyzer Uses the LowerCaseTokenizer

StopAnalyzer Combines a LowerCaseTokenizer with a StopFilter

WhitespaceAnalyzer Uses the WhitespaceTokenizer

PerFieldAnalyzerWrapper Useful for when different fields need different Analyzers

StandardAnalyzer Uses a list of English stop words and combines
StandardTokenizer, StandardFilter,
LowerCaseFilter, and StopFilter

GermanAnalyzer Analyzer for German language

RussianAnalyzer Analyzer for Russian language

Figure 8.5 The Analyzer class with
some of its concrete implementations

213Building the text analyzers
8.1.2 Writing a stemmer analyzer

It’s helpful to have an analyzer that can take care of plurals by stemming words. We
also want to add the capability to first normalize the tokens into lowercase and use a
custom stop word list. PorterStemStopWordAnalyzer is such an analyzer; the code is
shown in listing 8.1.

package com.alag.ci.textanalysis.lucene.impl;

import java.io.Reader;

import org.apache.lucene.analysis.*;
import org.apache.lucene.analysis.standard.StandardTokenizer;

public class PorterStemStopWordAnalyzer extends Analyzer {
 private static final String [] stopWords =
 {"and","of","the","to","is","their","can","all"};

 public TokenStream tokenStream(String fieldName, Reader reader) {
 Tokenizer tokenizer = new StandardTokenizer(reader);
 TokenFilter lowerCaseFilter =
 new LowerCaseFilter(tokenizer);
 TokenFilter stopFilter = new StopFilter(lowerCaseFilter,
 stopWords);
 TokenFilter stemFilter =
 new PorterStemFilter(stopFilter);
 return stemFilter;
 }
}

To keep things simple, we provide the analyzer with an internal stop word list. This list
is customized according to the text analysis example we worked through in section 4.3.
There are quite a few stop word lists that are available if you search the Web. For example,
you can use Google’s stop word list2 or a more detailed list.3 You may want to customize
your stop word list based on your application and the domain to which it’s applied.

Listing 8.1 Implementation of the PorterStemStopWordAnalyzer

2 http://www.ranks.nl/tools/stopwords.html
3 http://www.onjava.com/onjava/2003/01/15/examples/EnglishStopWords.txt

Figure 8.6 The Analyzer class with
some of its concrete implementations

Uses custom
stop word set

 Chains StopFilter Chains LowerCaseFilter
and uses stop word set

Takes instance of
StandardTokenizer as input

http://www.ranks.nl/tools/stopwords.html
http://www.onjava.com/onjava/2003/01/15/examples/EnglishStopWords.txt

214 CHAPTER 8 Building a text analysis toolkit
 Our analyzer extends the Analyzer class from Lucene, and we need to implement
one method:

public TokenStream tokenStream(String fieldName, Reader reader)

In this method, we first create a Tokenizer using the StandardTokenizer, which
removes all punctuation and splits the text at punctuation.

Tokenizer tokenizer = new StandardTokenizer(reader);

Let’s write a simple test to see the effect of PorterStemStopWordAnalyzer on the
text “Collective Intelligence and Web2.0.” Listing 8.2 shows the code for the test
method.

 public void testPorterStemmingAnalyzer() throws IOException {
 Analyzer analyzer = new PorterStemStopWordAnalyzer();
 String text = "Collective Intelligence and Web2.0";
 Reader reader = new StringReader(text);
 TokenStream ts = analyzer.tokenStream(null, reader);
 Token token = ts.next();
 while (token != null) {
 System.out.println(token.termText());
 token = ts.next();
 }
 }

The output from the test program is three tokens:

collect
intellig
web2.0

Note that collective is stemmed to collect, while intelligence is stemmed to intellig. Also,
web2.0 is a tag; the analyzer didn’t split the term web2.0.

 Next, we chain three TokenFilter instances, starting with the LowerCaseFilter, fol-
lowed by the StopFilter, and lastly the PorterStemFilter. We put this analyzer into
practice later in section 8.2, when we look at building our text analysis infrastructure.

8.1.3 Writing a TokenFilter to inject synonyms and detect phrases

In section 4.3.5, we discussed the need for detecting multiple-term tokens when ana-
lyzing text. Multiple-term tags are more specific than single-term tags and typically
have a higher inverse document frequency value. If you use human-generated tags,
either through professionals or users, it’s necessary to detect multiple-term tags that
may have been entered. These human-generated tags in essence form the universe of
phrases that you’d be interested in detecting. Similarly, synonyms help in matching
tags that have the same meaning. For example, CI is a commonly used synonym for col-
lective intelligence.

 In this section, we build a custom TokenFilter that does two things:

Listing 8.2 Test method to see the effect of PorterStemStopWordAnalyzer

215Building the text analyzers
1 It looks at two adjoining non–stop word terms to see if they form a phrase we’re
interested in. If the bi-term is a valid phrase then it’s injected into the token
stream.

2 It looks at a synonym dictionary to see if any of the terms or phrases in the
token stream have synonyms, in which case the synonyms are injected into the
token stream.

To illustrate the process of how phrases can be detected, we use a fairly simple strat-
egy—considering two adjoining non–stop word terms. You can enhance the phrase
detection strategy by using more than two terms or using a longer window of terms to
find phrases. A window size of two means considering the two terms adjoining to the
term of interest. You’ll have to balance the benefits of performing complicated logic
against the additional computation time required to analyze the text. You can also use
a variable size window, especially if there is a set of phrases you’re trying to detect from
the text.

 Before we can write our custom token filter, we need to get access to phrases and
synonyms. For this, we define two additional entities:

1 PhrasesCache: to determine whether a phrase is of interest to us
2 SynonymsCache: a cache of synonyms

Listing 8.3 shows the implementation for the interface PhrasesCache, which has only
one method: isValidPhrase.

package com.alag.ci.textanalysis;
import java.io.IOException;

public interface PhrasesCache {
 public boolean isValidPhrase(String text) throws IOException;
}

Listing 8.4 shows the implementation for SynonymsCache. It has only one method,
getSynonym, which returns the list of synonyms for a given text.

package com.alag.ci.textanalysis;
import java.io.IOException;
import java.util.List;

public interface SynonymsCache {
 public List<String> getSynonym(String text) throws IOException;
}

With this background, we’re now ready to write our custom token filter. Listing 8.5
shows the first part of the implementation of the SynonymPhraseStopWordFilter.
This part deals with the attributes, the constructor, and the implementation of the
next() method.

Listing 8.3 Interface to validate phrases

Listing 8.4 Interface to access synonyms

216 CHAPTER 8 Building a text analysis toolkit
package com.alag.ci.textanalysis.lucene.impl;

import java.io.IOException;
import java.util.*;

import org.apache.lucene.analysis.*;

import com.alag.ci.textanalysis.*;

public class SynonymPhraseStopWordFilter extends TokenFilter {
 private Stack<Token> injectedTokensStack = null;
 private Token previousToken = null;
 private SynonymsCache synonymsCache = null;
 private PhrasesCache phrasesCache = null;

 public SynonymPhraseStopWordFilter(TokenStream input,
 SynonymsCache synonymsCache, PhrasesCache phrasesCache) {
 super(input);
 this.synonymsCache = synonymsCache;
 this.phrasesCache = phrasesCache;
 this.injectedTokensStack = new Stack<Token>();
 }

 public Token next() throws IOException {
 if (this.injectedTokensStack.size() > 0) {
 return this.injectedTokensStack.pop();
 }
 Token token = input.next();
 if (token != null) {
 String phrase = injectPhrases(token);
 injectSynonyms(token.termText(), token);
 injectSynonyms(phrase, token);
 this.previousToken = token;
 }
 return token;
 }

The SynonymPhraseStopWordFilter extends the TokenFilter class. Its constructor
takes in another TokenStream object, a SynonymsCache, and a PhraseCache. It inter-
nally uses a Stack to keep track of injected tokens. It needs to implement one method:

 public Token next() throws IOException {

The attribute previousToken keeps track of the previous token. Phrases and syn-
onyms are injected by the following code:

 Token token = input.next();
 if (token != null) {
 String phrase = injectPhrases(token);
 injectSynonyms(token.termText(), token);
 injectSynonyms(phrase, token);
 this.previousToken = token;
 }

Note that the code

injectSynonyms(phrase, token);

Listing 8.5 The next() method for SynonymPhraseStopWordFilter

Extends
TokenFilter

Takes TokenStream,
SynonymsCache, and

PhraseCache

Injects additional
tokens in stream

Tokens on stack
passed to stream

Injects
phrases

Injects
synonyms

217Building the text analyzers
checks for synonyms for the injected phrases also. Listing 8.6 contains the remain-
der of the class. It has the implementation for the methods injectPhrases and
injectSynonyms.

private String injectPhrases(Token currentToken) throws IOException {
 if (this.previousToken != null) {
 String phrase = this.previousToken.termText() + " " +
 currentToken.termText();
 if (this.phrasesCache.isValidPhrase(phrase)) {
 Token phraseToken = new Token(phrase,
 currentToken.startOffset(),
 currentToken.endOffset(),"phrase");
 phraseToken.setPositionIncrement(0);
 this.injectedTokensStack.push(phraseToken);
 return phrase;
 }
 }
 return null;
 }

 private void injectSynonyms(String text, Token currentToken)
 throws IOException {
 if (text != null) {
 List<String> synonyms = this.synonymsCache.getSynonym(text);
 if (synonyms != null) {
 for (String synonym: synonyms) {
 Token synonymToken = new Token(synonym,
 currentToken.startOffset(),
 currentToken.endOffset(),"synonym");
 synonymToken.setPositionIncrement(0);
 this.injectedTokensStack.push(synonymToken);
 }
 }
 }
 }
}

For injecting phrases, we first concatenate the text from the previous token, a space,
and the current token text:

 String phrase = this.previousToken.termText() + " " +
 currentToken.termText();

We check to see if this is a phrase of interest. If it is, a new Token object is created with
this text and injected onto the stack.

 To inject synonyms, we get a list of synonyms for the text and inject each synonym
into the stack. Next, we leverage this TokenFilter to write an analyzer that uses it.
This analyzer normalizes the tokens, removes stop words, detects phrases, and injects
synonyms. We build this next.

Listing 8.6 Injecting phrases and synonyms

Checks against
dictionary

Concatenates
previous and
current tokens

Retrieves synonyms,
injects them into the

stream

218 CHAPTER 8 Building a text analysis toolkit
8.1.4 Writing an analyzer to inject synonyms and detect phrases

In this section we write an analyzer that uses the token filter we developed in the pre-
vious section. This analyzer normalizes tokens, removes stop words, detects phrases,
and injects synonyms. We use it as part of our text analysis infrastructure.

 Listing 8.7 shows the implementation for the SynonymPhraseStopWordAnalyzer.

package com.alag.ci.textanalysis.lucene.impl;

import java.io.Reader;

import org.apache.lucene.analysis.*;
import org.apache.lucene.analysis.standard.StandardTokenizer;

import com.alag.ci.textanalysis.*;

public class SynonymPhraseStopWordAnalyzer extends Analyzer{
 private SynonymsCache synonymsCache = null;
 private PhrasesCache phrasesCache = null;

 public SynonymPhraseStopWordAnalyzer(SynonymsCache synonymsCache,
 PhrasesCache phrasesCache) {
 this.synonymsCache = synonymsCache;
 this.phrasesCache = phrasesCache;
 }

 public TokenStream tokenStream(String fieldName, Reader reader) {
 Tokenizer tokenizer = new StandardTokenizer(reader);
 TokenFilter lowerCaseFilter = new LowerCaseFilter(tokenizer);
 TokenFilter stopFilter = new StopFilter(lowerCaseFilter,
 PorterStemStopWordAnalyzer.stopWords);
 return new SynonymPhraseStopWordFilter(stopFilter,
 this.synonymsCache, this.phrasesCache);
 }
}

SynonymPhraseStopWordAnalyzer extends the Analyzer class. Its constructor takes an
instance of the SynonymsCache and the PhrasesCache. The only method that we need
to implement is

 public TokenStream tokenStream(String fieldName, Reader reader) {

For this method, we first normalize the tokens, remove stop words, and then invoke
our custom filter, SynonymPhraseStopWordFilter.

 Next, we apply our analyzer to the sample text: “Collective Intelligence and
Web2.0.”

8.1.5 Putting our analyzers to work

Our custom analyzer, SynonymPhraseStopWordAnalyzer, needs access to an instance
of a PhrasesCache and SynonymsCache. As shown in figure 8.7, we implement
PhrasesCacheImpl and SynonymsCacheImpl. The common implementations for both
classes will be in their base class, CacheImpl.

Listing 8.7 Implementation of the SynonymPhraseStopWordAnalyzer

Constructor

Normalizes tokens

Injects synonyms and detects phrases

Filters for
stop words

219Building the text analyzers
Listing 8.8 shows the implementation for the CacheImpl class. We want the lookup for
phrases and synonyms to be independent of plurals; that’s why we compare text using
stemmed values.

package com.alag.ci.textanalysis.lucene.impl;

import java.io.*;

import org.apache.lucene.analysis.*;

public class CacheImpl {
 private Analyzer stemmer = null;

 public CacheImpl() {
 this.stemmer = new PorterStemStopWordAnalyzer();
 }

 protected String getStemmedText(String text) throws IOException {
 StringBuilder sb = new StringBuilder();
 Reader reader = new StringReader(text);
 TokenStream tokenStream = this.stemmer.tokenStream(null, reader);
 Token token = tokenStream.next();
 while (token != null) {
 sb.append(token.termText());
 token = tokenStream.next();
 if (token != null) {
 sb.append(" ");
 }
 }
 return sb.toString();
 }
}

There’s only one method in this class:

String getStemmedText(String text) throws IOException

We use our custom analyzer PorterStemStopWordAnalyzer to get the stemmed value
for a text. This method iterates over all the terms in the text to get their stemmed text
and converts phrases with a set of quotes (“ ”) between the terms.

Listing 8.8 Implementation of the CacheImpl class

<<realize>> <<realize>>

Figure 8.7 The implementations
for the PhrasesCache and
SynonymsCache

Uses PorterStemStopWordAnalyzer
 for stemming

Method to get
stemmed text

220 CHAPTER 8 Building a text analysis toolkit
 To keep things simple, we implement a class, SynonymsCacheImpl, which has only
one synonym—collective intelligence has the synonym ci. For your application, you’ll prob-
ably maintain a list of synonyms either in the database or in an XML file. Listing 8.9 shows
the implementation for SynonymsCacheImpl.

package com.alag.ci.textanalysis.lucene.impl;

import java.io.IOException;
import java.util.*;

import com.alag.ci.textanalysis.SynonymsCache;

public class SynonymsCacheImpl extends CacheImpl implements SynonymsCache {
 private Map<String,List<String>> synonyms = null;

 public SynonymsCacheImpl() throws IOException {
 this.synonyms = new HashMap<String,List<String>>();
 List<String> ciList = new ArrayList<String>();
 ciList.add("ci");
 this.synonyms.put(getStemmedText("collective intelligence"),
 ciList);
 }

 public List<String> getSynonym(String text) throws IOException{
 return this.synonyms.get(getStemmedText(text));
 }
}

Note that to look up synonyms, the class compares stemmed values, so that plurals are
automatically taken care of. Similarly, in our PhrasesCacheImpl, we have only one
phrase, collective intelligence. Listing 8.10 shows the implementation for the Phrases-
CacheImpl class.

package com.alag.ci.textanalysis.lucene.impl;

import java.io.IOException;
import java.util.*;

import com.alag.ci.textanalysis.PhrasesCache;

public class PhrasesCacheImpl extends CacheImpl implements PhrasesCache {
 private Map<String,String> validPhrases = null;

 public PhrasesCacheImpl() throws IOException {
 validPhrases = new HashMap<String,String>();
 validPhrases.put(getStemmedText("collective intelligence"), null);
 }

 public boolean isValidPhrase(String text) throws IOException {
 return this.validPhrases.containsKey(getStemmedText(text));
 }
}

Listing 8.9 Implementation of SynonymsCacheImpl

Listing 8.10 Implementation of the PhrasesCacheImpl

Has only one synonym

Uses stemmed values
for comparison

Only one phrase: “collective intelligence”

 Uses stemmed values
for comparison

221Building the text analysis infrastructure
Again phrases are compared using their stemmed values. Now we’re ready to write a
test method to see the output for our test case, “Collective Intelligence and Web2.0.”
The code for analyzing this text using SynonymPhraseStopWordAnalyzer is shown in
listing 8.11.

public void testSynonymsPhrases() throws IOException {
 SynonymsCache synonymsCache = new SynonymsCacheImpl();
 PhrasesCache phrasesCache = new PhrasesCacheImpl();
 Analyzer analyzer = new SynonymPhraseStopWordAnalyzer(
 synonymsCache,phrasesCache);
 String text = "Collective Intelligence and Web2.0";
 Reader reader = new StringReader(text);
 TokenStream ts = analyzer.tokenStream(null, reader);
 Token token = ts.next();
 while (token != null) {
 System.out.println(token.termText());
 token = ts.next();
 }
 }

The output from this program is

collective
intelligence
ci
collective intelligence
web2.0

As expected, there are five tokens. Note the token ci, which gets injected, as it’s a syn-
onym for the phrase collective intelligence, which is also detected.

 So far, we’ve looked at the available analyzers from Lucene and built a couple of
custom analyzers to process text. Text comparisons are done using stemmed values,
which take care of plurals.

 Next, let’s look at how all this hard work we’ve done so far can be leveraged to
build the term vector representation that we discussed in section 2.2.4 and a text anal-
ysis infrastructure that abstracts out terminology used by Lucene. That way, if tomor-
row you need to use a different text-processing package, the abstractions we create will
make it simple to change implementations.

8.2 Building the text analysis infrastructure
The core classes for our text analysis infrastructure will be independent of Lucene
classes. This section is split into three parts:

1 Infrastructure related to tags
2 Infrastructure related to term vectors
3 Putting it all together to build our text analyzer class

Figure 8.8 shows the classes that will be developed for this package. We define a class,
Tag, to represent tags in our system. Tags can contain single terms or multiple-term

Listing 8.11 Test program using SynonymPhraseStopWordAnalyzer

222 CHAPTER 8 Building a text analysis toolkit
phrases. We use the flyweight design pattern, where Tag instances are immutable and
cached by TagCache. The TagMagnitude class consists of a magnitude associated with a
Tag instance. The term vector is represented by the TagMagnitudeVector class and
consists of a number of TagMagnitude instances. In the previous section, we already
looked at the SynonymsCache and the PhrasesCache classes that are used to access syn-
onyms and phrases. The TextAnalyzer class is the main class for processing text. The
InverseDocFreqEstimator is used for getting the inverse document frequency associ-
ated with a Tag. The TextAnalyzer uses the TagCache, SynonymsCache, PhrasesCache,
and InverseDocFreqEstimator to create a TagMagnitudeVector for the text.

 Next, let’s look at developing the infrastructure related to tags.

8.2.1 Building the tag infrastructure

The four classes associated with implementing the tag infrastructure are shown in fig-
ure 8.9. These classes are Tag and its implementation TagImpl, along with TagCache
and its implementation TagCacheImpl.

uses

uses

uses

creates

0..*

0..*

Figure 8.8 The infrastructure for text analysis

<<Interface>>

TagCache

getTag(in text:String):Tag

TagCacheImpl TagImpl

getDisplayText():String

getStemmedText():String

C

II

C

<<Interface>>

Tag

<<realize>> <<realize>>

0..*

Figure 8.9 Tag
infrastructure–related classes

223Building the text analysis infrastructure
A Tag is the smallest entity in our framework. As shown in listing 8.12, a Tag has dis-
play text and its stemmed value. Remember we want to compare tags based on their
stemmed values.

package com.alag.ci.textanalysis;

public interface Tag {
 public String getDisplayText();
 public String getStemmedText();
}

Listing 8.13 shows the implementation for TagImpl, which implements the Tag inter-
face. This is implemented as an immutable object, where its display text and stemmed
values are specified in the constructor.

package com.alag.ci.textanalysis.lucene.impl;

import com.alag.ci.textanalysis.Tag;

public class TagImpl implements Tag {
 private String displayText = null;
 private String stemmedText = null;
 private int hashCode ;

 public TagImpl(String displayText, String stemmedText) {
 this.displayText = displayText;
 this.stemmedText = stemmedText;
 hashCode = stemmedText.hashCode();
 }

 public String getDisplayText() {
 return displayText;
 }

 public String getStemmedText() {
 return stemmedText;
 }

 @Override
 public boolean equals(Object obj) {
 return (this.hashCode == obj.hashCode());
 }

 @Override
 public int hashCode() {
 return this.hashCode;
 }

 @Override
 public String toString() {
 return "[" + this.displayText + ", " + this.stemmedText + "]";
 }
}

Listing 8.12 The Tag interface

Listing 8.13 The TagImpl implementation

Immutable
object

Hashcode
precomputed for
faster lookup

224 CHAPTER 8 Building a text analysis toolkit
Note that two tags with the same stemmed text are considered equivalent. Depending
on your domain, you could further enhance the tag-matching logic. For example, to
compare multi-term phrases, you may want to consider tags with the same terms equiv-
alent, independent of their position. Remember, from a performance point of view,
you want to keep the matching logic as efficient as possible. Tag instances are rela-
tively heavyweight and text processing is expensive. Therefore, we use the flyweight
pattern and hold on to the Tag instances. The TagCache class is used for this purpose.

 We access an instance of Tag through the TagCache. The TagCache interface has
only one method, getTag, as shown in listing 8.14.

package com.alag.ci.textanalysis;

import java.io.IOException;

public interface TagCache {
 public Tag getTag(String text) throws IOException ;
}

TagCache is implemented by TagCacheImpl, which is shown in listing 8.15. The imple-
mentation is straightforward. A Map is used to store the mapping between stemmed
text and a Tag instance.

package com.alag.ci.textanalysis.lucene.impl;

import java.io.IOException;
import java.util.*;

import com.alag.ci.textanalysis.*;

public class TagCacheImpl extends CacheImpl implements TagCache {
 private Map<String,Tag> tagMap = null;

 public TagCacheImpl() {
 this.tagMap = new HashMap<String,Tag>();
 }

 public Tag getTag(String text) throws IOException {
 Tag tag = this.tagMap.get(text);
 if (tag == null) {
 String stemmedText = getStemmedText(text);
 tag = new TagImpl(text, stemmedText);
 this.tagMap.put(stemmedText, tag);
 }
 return tag;
 }
}

Note that lookups from the cache are done using stemmed text:

getStemmedText(text);

Listing 8.14 The TagCache interface

Listing 8.15 The implementation for TagCacheImpl

Looks up
instances using
stemmed value

225Building the text analysis infrastructure
With this background, we’re now ready to develop the implementation for the term
vectors.

8.2.2 Building the term vector infrastructure

Figure 8.10 shows the classes associated with extending the tag infrastructure to repre-
sent the term vector. The TagMagnitude interface associates a magnitude with the Tag,
while the TagMagnitudeVector, which is a composition of TagMagnitude instances,
represents the term vector.4

TAGMAGNITUDE-RELATED INTERFACES

Listing 8.16 shows the definition for the TagMagnitude interface. It extends the Tag
and Comparable<TagMagnitude> interfaces. Implementing the Comparable interface
is helpful for sorting the TagMagnitude instances by their weights.

package com.alag.ci.textanalysis;

public interface TagMagnitude extends Tag, Comparable<TagMagnitude> {
 public double getMagnitude();
 public double getMagnitudeSqd();
 public Tag getTag();
}

There are only three methods associated with the TagMagnitude interface: one to get
the magnitude, a utility method to get the square of the magnitudes, and one to get
the associated Tag object.

 The TagMagnitudeImpl class implements the TagMagnitude interface and is shown
in listing 8.17.

4 Term vector and tag vector are used interchangeably here, though there’s a difference between terms and tags.
Tags may be single terms or may contain phrases, which are multiple terms.

Listing 8.16 The TagMagnitude interface

<<realize>><<realize>>

Figure 8.10 Term vector–related infrastructure

226 CHAPTER 8 Building a text analysis toolkit
package com.alag.ci.textanalysis.termvector.impl;

import com.alag.ci.textanalysis.*;

public class TagMagnitudeImpl implements TagMagnitude {
 private Tag tag = null;
 private double magnitude ;

 public TagMagnitudeImpl(Tag tag, double magnitude) {
 this.tag = tag;
 this.magnitude = magnitude;
 }

 public Tag getTag() {
 return this.tag;
 }

 public double getMagnitude() {
 return this.magnitude;
 }

 public double getMagnitudeSqd() {
 return this.magnitude*this.magnitude;
 }

 public String getDisplayText() {
 return this.tag.getDisplayText();
 }

 public String getStemmedText() {
 return this.tag.getStemmedText();
 }

 @Override
 public String toString() {
 return "[" + this.tag.getDisplayText() + ", " +
 this.tag.getStemmedText() +
 ", " + this.getMagnitude() + "]";
 }

 public int compareTo(TagMagnitude o) {
 double diff = this.magnitude - o.getMagnitude();
 if (diff > 0) {
 return -1;
 }else if (diff < 0) {
 return 1;
 }
 return 0;
 }
}

Note that the TagMagnitudeImpl class is implemented as an immutable class. It has a
magnitude attribute that’s implemented as a double. The TagMagnitudeImpl class
has access to a Tag instance and delegates to this object any methods related to the
Tag interface.

Listing 8.17 The implementation for TagMagnitudeImpl

Immutable
object

Useful for sorting
by magnitude

227Building the text analysis infrastructure
TAGMAGNITUDEVECTOR-RELATED INTERFACES

Next, we’re ready to define the TagMagnitudeVector interface, which represents a
term vector. Listing 8.18 contains the methods associated with this interface.

package com.alag.ci.textanalysis;

import java.util.*;

public interface TagMagnitudeVector {
 public List<TagMagnitude> getTagMagnitudes();
 public Map<Tag,TagMagnitude> getTagMagnitudeMap() ;
 public double dotProduct(TagMagnitudeVector o) ;
 public TagMagnitudeVector add(TagMagnitudeVector o);
 public TagMagnitudeVector add(Collection<TagMagnitudeVector> tmList);
}

The TagMagnitudeVector has four methods. The first two, getTagMagnitudes() and
getTagMagnitudeMap(), are to access the TagMagnitude instance. The third method,
add(), is useful for adding two term vectors, while the last method, dotProduct(), is
useful for computing the similarity between two term vectors.

 Lastly, let’s look at the implementation for TagMagnitudeVectorImpl, which imple-
ments the TagMagnitudeVector interface. The first part of this implementation is
shown in listing 8.19. We use a Map to hold the instances associated with the term vector.
Typically, text contains a small subset of tags available. For example, in an application,
there may be more than 100,000 different tags, but a document may contain only 25
unique tags.

package com.alag.ci.textanalysis.termvector.impl;

import java.util.*;
import com.alag.ci.textanalysis.*;

public class TagMagnitudeVectorImpl implements TagMagnitudeVector {
 private Map<Tag,TagMagnitude> tagMagnitudesMap = null;

 public TagMagnitudeVectorImpl(List<TagMagnitude> tagMagnitudes) {
 normalize(tagMagnitudes);
 }

 private void normalize(List<TagMagnitude> tagMagnitudes) {
 tagMagnitudesMap = new HashMap<Tag,TagMagnitude>();
 if ((tagMagnitudes == null) || (tagMagnitudes.size() == 0)) {
 return;
 }
 double sumSqd = 0.;
 for (TagMagnitude tm: tagMagnitudes) {
 sumSqd += tm.getMagnitudeSqd();
 }
 if (sumSqd == 0.) {

Listing 8.18 The TagMagnitudeVector interface

Listing 8.19 The basic TagMagnitudeVectorImpl class

Take dot product of
two term vectors

Add two
term vectors

Add a collection of term vectors

Normalize input list

228 CHAPTER 8 Building a text analysis toolkit
 sumSqd = 1./tagMagnitudes.size();
 }
 double normFactor = Math.sqrt(sumSqd);
 for (TagMagnitude tm: tagMagnitudes) {
 TagMagnitude otherTm = this.tagMagnitudesMap.get(tm.getTag());
 double magnitude = tm.getMagnitude();
 if (otherTm != null) {
 magnitude = mergeMagnitudes(magnitude,
 otherTm.getMagnitude()*normFactor);
 }
 TagMagnitude normalizedTm = new TagMagnitudeImpl(tm.getTag(),
 (magnitude/normFactor));
 this.tagMagnitudesMap.put(tm.getTag(), normalizedTm);
 }
 }

 public List<TagMagnitude> getTagMagnitudes() {
 List<TagMagnitude> sortedTagMagnitudes =
 new ArrayList<TagMagnitude>();
 sortedTagMagnitudes.addAll(tagMagnitudesMap.values());
 Collections.sort(sortedTagMagnitudes);
 return sortedTagMagnitudes;
 }

 public Map<Tag,TagMagnitude> getTagMagnitudeMap() {
 return this.tagMagnitudesMap;
 }

private double mergeMagnitudes(double a, double b) {
 return Math.sqrt(a*a + b*b);
 }

The TagMagnitudeVectorImpl class is implemented as an immutable object. It nor-
malizes the input list of TagMagnitude objects such that the magnitude for this vector
is 1.0. For the method getTagMagnitudes, the TagMagnitude instances are sorted by
magnitude. Listing 8.20 contains the implementation for two methods. First is the
dotProduct, which computes the similarity between the tag vector and another Tag-
MagnitudeVector. The second method, add(), is useful for adding the current vector
to another vector.

 public double dotProduct(TagMagnitudeVector o) {
 Map<Tag,TagMagnitude> otherMap = o.getTagMagnitudeMap() ;
 double dotProduct = 0.;
 for (Tag tag: this.tagMagnitudesMap.keySet()) {
 TagMagnitude otherTm = otherMap.get(tag);
 if (otherTm != null) {
 TagMagnitude tm = this.tagMagnitudesMap.get(tag);
 dotProduct += tm.getMagnitude()*otherTm.getMagnitude();
 }
 }
 return dotProduct;
 }

Listing 8.20 Computing the dot product in TagMagnitudeVectorImpl

Normalization
factor set to 1

Sorts results
by magnitude

Formula for
merging two terms

Computes dot product
of two vectors

229Building the text analysis infrastructure
 public TagMagnitudeVector add(TagMagnitudeVector o) {
 Map<Tag,TagMagnitude> otherMap = o.getTagMagnitudeMap() ;
 Map<Tag,Tag> uniqueTags = new HashMap<Tag,Tag>();
 for (Tag tag: this.tagMagnitudesMap.keySet()) {
 uniqueTags.put(tag,tag);
 }
 for (Tag tag: otherMap.keySet()) {
 uniqueTags.put(tag,tag);
 }
 List<TagMagnitude> tagMagnitudesList = new
 ArrayList<TagMagnitude>(uniqueTags.size());
 for (Tag tag: uniqueTags.keySet()) {
 TagMagnitude tm = mergeTagMagnitudes(
 this.tagMagnitudesMap.get(tag),
 otherMap.get(tag));
 tagMagnitudesList.add(tm);
 }
 return new TagMagnitudeVectorImpl(tagMagnitudesList);
 }

 public TagMagnitudeVector add(Collection<TagMagnitudeVector> tmList) {
 Map<Tag,Double> uniqueTags = new HashMap<Tag,Double>();
 for (TagMagnitude tagMagnitude: this.tagMagnitudesMap.values()) {
 uniqueTags.put(tagMagnitude.getTag(),
 new Double(tagMagnitude.getMagnitudeSqd()));
 }
 for (TagMagnitudeVector tmv : tmList) {
 Map<Tag,TagMagnitude> tagMap= tmv.getTagMagnitudeMap();
 for (TagMagnitude tm: tagMap.values()) {
 Double sumSqd = uniqueTags.get(tm.getTag());
 if (sumSqd == null) {
 uniqueTags.put(tm.getTag(), tm.getMagnitudeSqd());
 } else {
 sumSqd = new Double(sumSqd.doubleValue() +
 tm.getMagnitudeSqd());
 uniqueTags.put(tm.getTag(), sumSqd);
 }
 }
 }
 List<TagMagnitude> newList = new ArrayList<TagMagnitude>();
 for (Tag tag: uniqueTags.keySet()) {
 newList.add(new TagMagnitudeImpl(tag,
 Math.sqrt(uniqueTags.get(tag))));
 }
 return new TagMagnitudeVectorImpl(newList);
 }

 private TagMagnitude mergeTagMagnitudes(TagMagnitude a,
 TagMagnitude b) {
 if (a == null) {
 if (b == null) {
 return null;
 }
 return b;
 } else if (b == null) {
 return a;

Creates superset
of all tags

Merges magnitudes
for same tag

Iterates over
all values for

tag

230 CHAPTER 8 Building a text analysis toolkit
 } else {
 double magnitude = mergeMagnitudes(a.getMagnitude(),
 b.getMagnitude());
 return new TagMagnitudeImpl(a.getTag(),magnitude);
 }
 }

 @Override
 public String toString() {
 StringBuilder sb = new StringBuilder();
 List<TagMagnitude> sortedList = getTagMagnitudes();
 double sumSqd = 0.;
 for (TagMagnitude tm: sortedList) {
 sb.append(tm);
 sumSqd += tm.getMagnitude()*tm.getMagnitude();
 }
 sb.append("\nSumSqd = " + sumSqd);
 return sb.toString();
 }
}

To compute the dotProduct between a vector and another vector, the code finds the
tags that are common between the two instances. It then sums the multiplied magni-
tudes between the two instances. For the add() method, we first need to find the
superset for all the tags. Then the magnitude for the new vector for a tag is the sum of
the magnitudes in the two vectors. At the end, the code creates a new instance

new TagMagnitudeVectorImpl(tagMagnitudesList);

which will automatically normalize the values in its constructor, such that the magni-
tude is one.

 To compute the resulting TagMagnitudeVector by adding a number of TagMagni-
tudeVector instances

 public TagMagnitudeVector add(Collection<TagMagnitudeVector> tmList)

we sum the squared magnitudes for a tag in all the TagMagnitudeVector instances. A
new TagMagnitudeVector instance is created that has a superset of all the tags and
normalized magnitudes. We use this method in clustering.

 Next, let’s write a simple program to show how this term vector infrastructure can
be used. The output from the code sample shown in listing 8.21 is

[b, b, 0.6963106238227914][c, c, 0.5222329678670935][a, a,
0.49236596391733095]

Note that there are three tags, and the two instances of the a tag are automatically
merged. The sum of the squares for all the magnitudes is also equal to one.

 public void testBasicOperations() throws Exception {
 TagCache tagCache = new TagCacheImpl();
 List<TagMagnitude> tmList = new ArrayList<TagMagnitude>();

Listing 8.21 A simple example for TagMagnitudeImpl

231Building the text analysis infrastructure
 tmList.add(new TagMagnitudeImpl(tagCache.getTag("a"),1.));
 tmList.add(new TagMagnitudeImpl(tagCache.getTag("b"),2.));
 tmList.add(new TagMagnitudeImpl(tagCache.getTag("c"),1.5));
 tmList.add(new TagMagnitudeImpl(tagCache.getTag("a"),1.));
 TagMagnitudeVector tmVector1 = new TagMagnitudeVectorImpl(tmList);
 System.out.println(tmVector1);
}

So far we’ve developed the infrastructure to represent a Tag and TagMagnitudeVector.
We’re down to the last couple classes. Next, we look at developing the TextAnalyzer.

8.2.3 Building the Text Analyzer class

In this section, we implement the remaining classes for our text analysis infrastruc-
ture. Figure 8.11 shows the four classes that we discuss. The InverseDocFreq-
Estimator provides an estimate for the inverse document frequency (idf) for a Tag.
Remember, the idf is necessary to get an estimate of how frequently a tag is used; the
less frequently a tag is used, the higher its idf value. The idf value contributes to the
magnitude of the tag in the term vector. In the absence of any data on how frequently
various tags appear, we implement the EqualInverseDocFreqEstimator, which simply
returns 1 for all values. The TextAnalyzer class is our primary class for analyzing text.
We write a concrete implementation for this class called LuceneTextAnalyzer that
leverages all the infrastructure and analyzers we’ve developed in this chapter.

Listing 8.22 shows the InverseDocFreqEstimator interface. It has only one method,
which provides the inverse document frequency for a specified Tag instance.

package com.alag.ci.textanalysis;

public interface InverseDocFreqEstimator {
 public double estimateInverseDocFreq(Tag tag);
}

Listing 8.23 contains a dummy implementation for InverseDocFreqEstimator. Here,
EqualInverseDocFreqEstimator simply returns 1.0 for all tags.

Listing 8.22 The interface for the InverseDocFreqEstimator

<<realize>>

uses

<<realize>>

Figure 8.11 The TextAnalyzer and the InverseDocFreqEstimator

232 CHAPTER 8 Building a text analysis toolkit
package com.alag.ci.textanalysis.lucene.impl;

import com.alag.ci.textanalysis.InverseDocFreqEstimator;
import com.alag.ci.textanalysis.Tag;

public class EqualInverseDocFreqEstimator implements
 InverseDocFreqEstimator {
 public double estimateInverseDocFreq(Tag tag) {
 return 1.0;
 }
}

Listing 8.24 contains the interface for TextAnalyzer, the primary class to analyze text.

package com.alag.ci.textanalysis;

import java.io.IOException;
import java.util.List;

public interface TextAnalyzer {
 public List<Tag> analyzeText(String text) throws IOException;
 public TagMagnitudeVector createTagMagnitudeVector(String text)
 throws IOException;
}

The TextAnalyzer interface has two methods. The first, analyzeText, gives back the
list of Tag objects obtained by analyzing the text. The second, createTagMagnitude-
Vector, returns a TagMagnitudeVector representation for the text. It takes into
account the term frequency and the inverse document frequency for each of the tags
to compute the term vector.

 Listing 8.25 shows the first part of the code for the implementation of LuceneText-
Analyzer, which shows the constructor and the analyzeText method.

package com.alag.ci.textanalysis.lucene.impl;

import java.io.*;
import java.util.*;

import org.apache.lucene.analysis.*;

import com.alag.ci.textanalysis.*;
import com.alag.ci.textanalysis.termvector.impl.*;

public class LuceneTextAnalyzer implements TextAnalyzer {
 private TagCache tagCache = null;
 private InverseDocFreqEstimator inverseDocFreqEstimator = null;

 public LuceneTextAnalyzer(TagCache tagCache,
 InverseDocFreqEstimator inverseDocFreqEstimator) {
 this.tagCache = tagCache;
 this.inverseDocFreqEstimator = inverseDocFreqEstimator;

Listing 8.23 The interface for the EqualInverseDocFreqEstimator

Listing 8.24 The interface for the TextAnalyzer

Listing 8.25 The core of the LuceneTextAnalyzer class

233Building the text analysis infrastructure
 }

 public List<Tag> analyzeText(String text) throws IOException {
 Reader reader = new StringReader(text);
 Analyzer analyzer = getAnalyzer();
 List<Tag> tags = new ArrayList<Tag>();
 TokenStream tokenStream = analyzer.tokenStream(null, reader) ;
 Token token = tokenStream.next();
 while (token != null) {
 tags.add(getTag(token.termText()));
 token = tokenStream.next();
 }
 return tags;
 }
 protected Analyzer getAnalyzer() throws IOException {
 return new SynonymPhraseStopWordAnalyzer(new SynonymsCacheImpl(),
 new PhrasesCacheImpl());
 }

The method analyzeText gets an Analyzer. In this case, we use SynonymPhraseStop-
WordAnalyzer. LuceneTextAnalyzer is really a wrapper class that wraps Lucene-specific
classes into those of our infrastructure. Creating the TagMagnitudeVector from text
involves computing the term frequencies for each tag and using the tag’s inverse doc-
ument frequency to create appropriate weights. This is shown in listing 8.26.

 public TagMagnitudeVector createTagMagnitudeVector(String text)
 throws IOException {
 List<Tag> tagList = analyzeText(text);
 Map<Tag,Integer> tagFreqMap =
 computeTermFrequency(tagList);
 return applyIDF(tagFreqMap);
 }

 private Map<Tag,Integer> computeTermFrequency(List<Tag> tagList) {
 Map<Tag,Integer> tagFreqMap = new HashMap<Tag,Integer>();
 for (Tag tag: tagList) {
 Integer count = tagFreqMap.get(tag);
 if (count == null) {
 count = new Integer(1);
 } else {
 count = new Integer(count.intValue() + 1);
 }
 tagFreqMap.put(tag, count);
 }
 return tagFreqMap;
 }

 private TagMagnitudeVector applyIDF(Map<Tag,Integer> tagFreqMap) {
 List<TagMagnitude> tagMagnitudes = new ArrayList<TagMagnitude>();
 for (Tag tag: tagFreqMap.keySet()) {
 double idf = this.inverseDocFreqEstimator.
 estimateInverseDocFreq(tag);
 double tf = tagFreqMap.get(tag);

Listing 8.26 Creating the term vectors in LuceneTextAnalyzer

Analyze text to create tags

Compute term frequencies
Use inverse document frequency

234 CHAPTER 8 Building a text analysis toolkit
 double wt = tf*idf;
 tagMagnitudes.add(new TagMagnitudeImpl(tag,wt));
 }
 return new TagMagnitudeVectorImpl(tagMagnitudes);
 }

 private Tag getTag(String text) throws IOException {
 return this.tagCache.getTag(text);
 }
}

To create the TagMagnitudeVector, we first analyze the text to create a list of tags:

 List<Tag> tagList = analyzeText(text);

Next we compute the term frequencies for each of the tags:

 Map<Tag,Integer> tagFreqMap = computeTermFrequency(tagList);

And last, create the vector by combining the term frequency and the inverse docu-
ment frequency:

 return applyIDF(tagFreqMap);

We’re done with all the classes we need to analyze text. Next, let’s go through an
example of how this infrastructure can be used.

8.2.4 Applying the text analysis infrastructure

We use the same example we introduced in section 4.3.1. Consider a blog entry with
the following text (see also figure 8.2):

Title: “Collective Intelligence and Web2.0”

Body: “Web2.0 is all about connecting users to users, inviting users to participate, and
applying their collective intelligence to improve the application. Collective intelligence
enhances the user experience.”

Let’s write a simple program that shows the tags associated with analyzing the title and
the body. Listing 8.27 shows the code for our simple program.

 private void displayTextAnalysis(String text) throws IOException {
 List<Tag> tags = analyzeText(text);
 for (Tag tag: tags) {
 System.out.println(tag);
 }
 }
public static void main(String [] args) throws IOException {
 String title = "Collective Intelligence and Web2.0";
 String body = "Web2.0 is all about connecting users to users, " +
 " inviting users to participate and applying their " +
 " collective intelligence to improve the application." +
 " Collective intelligence" +
 " enhances the user experience" ;

Listing 8.27 Computing the tokens for the title and body

Method to display tags

235Building the text analysis infrastructure
 TagCacheImpl t = new TagCacheImpl();
 InverseDocFreqEstimator idfEstimator =
 new EqualInverseDocFreqEstimator();
 TextAnalyzer lta = new LuceneTextAnalyzer(t, idfEstimator);
 System.out.print("Analyzing the title \n");
 lta.displayTextAnalysis(title);
 System.out.print("Analyzing the body \n");

First we create an instance of the TextAnalyzer class:

 TagCacheImpl t = new TagCacheImpl();
 InverseDocFreqEstimator idfEstimator =
 new EqualInverseDocFreqEstimator();
TextAnalyzer lta = new LuceneTextAnalyzer(t, idfEstimator);

Then we get the tags associated with the title and the body. Listing 8.28 shows the out-
put. Note that the output for each tag consists of unstemmed text and its stemmed
value.

Analyzing the title
[collective, collect] [intelligence, intellig] [ci, ci] [collective
intelligence, collect intellig] [web2.0, web2.0]
Analyzing the body
[web2.0, web2.0] [about, about] [connecting, connect] [users, user] [users,
 user] [inviting, invit] [users, user] [participate, particip] [applying,
appli] [collective, collect] [intelligence, intellig] [ci, ci] [collective
intelligence, collect intellig] [improve, improv] [application, applic]
[collective, collect] [intelligence, intellig] [ci, ci] [collective
intelligence, collect intellig] [enhances, enhanc] [users, user]
[experience, experi]

It’s helpful to visualize the tag cloud using the infrastructure we developed in chap-
ter 3. Listing 8.29 shows the code for visualizing the tag cloud.

 private TagCloud createTagCloud(TagMagnitudeVector tmVector) {
 List<TagCloudElement> elements = new ArrayList<TagCloudElement>();
 for (TagMagnitude tm: tmVector.getTagMagnitudes()) {
 TagCloudElement element = new TagCloudElementImpl(
 tm.getDisplayText(), tm.getMagnitude());
 elements.add(element);
 }
 return new TagCloudImpl(elements, new

LinearFontSizeComputationStrategy(3,"font-size: "));
 }

 private String visualizeTagCloud(TagCloud tagCloud) {
 HTMLTagCloudDecorator decorator = new HTMLTagCloudDecorator();
 String html = decorator.decorateTagCloud(tagCloud);
 System.out.println(html);
 return html;
 }

Listing 8.28 Tag listing for our example

Listing 8.29 Visualizing the term vector as a tag cloud

Creating instance
of TextAnalyzer

Create
TagCloudElement
instances

Use decorator to
visualize tag cloud

236 CHAPTER 8 Building a text analysis toolkit
The code for generating the HTML to visualize the tag cloud is fairly simple, since all
the work was done earlier in chapter 3. We first need to create a List of TagCloud-
Element instances, by iterating over the term vector. Once we create a TagCloud
instance, we can generate HTML using the HTMLTagCloudDecorator class.

 The title “Collective Intelligence and Web2.0” gets converted into five tags: [collec-
tive, collect] [intelligence, intellig] [ci, ci] [collective intelligence, collect intellig]
[web2.0, web2.0]. This is also shown in figure 8.12.

Similarly, the body gets converted into 15 tags, as shown in figure 8.13.

We can extend our example to compute the tag magnitude vectors for the title and
body, and then combine the two vectors, as shown in listing 8.30.

 TagMagnitudeVector tmTitle = lta.createTagMagnitudeVector(title);
 TagMagnitudeVector tmBody = lta.createTagMagnitudeVector(body);
 TagMagnitudeVector tmCombined = tmTitle.add(tmBody);
 System.out.println(tmCombined);
}

The output from the second part of the program is shown in listing 8.31. Note that
the top tags for this blog entry are users, collective, ci, intelligence, collective intelligence, and
web2.0.

[users, user, 0.4364357804719848]
[collective, collect, 0.3842122429322726]
[ci, ci, 0.3842122429322726]
[intelligence, intellig, 0.3842122429322726]
[collective intelligence, collect intellig, 0.3842122429322726]
[web2.0, web2.0, 0.3345216912320663]
[about, about, 0.1091089451179962]
[applying, appli, 0.1091089451179962]
[application, applic, 0.1091089451179962]
[enhances, enhanc, 0.1091089451179962]
[inviting, invit, 0.1091089451179962]

Listing 8.30 Computing the TagMagnitudeVector

Listing 8.31 Results from displaying the results for TagMagnitudeVector

Figure 8.12 The tag cloud for
the title, consisting of five tags

Figure 8.13 The tag cloud for the body, consisting of 15 tags

237Use cases for applying the framework
[improve, improv, 0.1091089451179962]
[experience, experi, 0.1091089451179962]
[participate, particip, 0.1091089451179962]
[connecting, connect, 0.1091089451179962]

The same data can be better visualized using the tag cloud shown in figure 8.14.

So far, we’ve developed an infrastructure for analyzing text. The core infrastructure
interfaces are independent of Lucene-specific classes and can be implemented by
other text analysis packages. The text analysis infrastructure is useful in extracting tags
and creating a term vector representation for the text. This term vector representa-
tion is helpful for personalization, building predicting models, clustering to find pat-
terns, and so on.

8.3 Use cases for applying the framework
This has been a fairly technical chapter. We’ve gone through a lot of effort to develop
infrastructure for text analysis. It’s useful to briefly review some of the use cases where
this can be applied. This is shown in table 8.5.

We’ve already demonstrated the process of analyzing text to extract keywords associ-
ated with them. Figure 8.15 shows an example of how relevant terms can be detected
and hyperlinked. In this case, relevant terms are hyperlinked and available for a user
and web crawlers, inviting them to explore other pages of interest.

 There are two main approaches for advertising that are normally used in an appli-
cation. First, sites sell search words—certain keywords that are sold to advertisers. Let’s
say that the phrase collective intelligence has been sold to an advertiser. Whenever the

Table 8.5 Some use cases for text analysis infrastructure

Use case Description

Analyzing a number of text
documents to extract most-
relevant keywords

The term vectors associated with the documents can be combined to
build a representation for the document set. You can use this approach
to build an automated representation for a set of documents visited by a
user, or for finding items similar to a set of documents.

Advertising To show relevant advertisements on a page, you can take the keywords
associated with the test and find the subset of keywords that have adver-
tisements assigned.

Classification and predictive
models

The term vector representation can be used as an input for building pre-
dictive models and classifiers.

Figure 8.14 The tag cloud
for the combined title and
body, consisting of 15 tags

238 CHAPTER 8 Building a text analysis toolkit
user types collective intelligence in the search box or visits a page that’s related to collective
intelligence, we want to show the advertisement related to this keyword. The second
approach is to associate text with an advertisement (showing relevant products works
the same way), analyze the text, create a term vector representation, and then associ-
ate the relevant ad based on the main context of the page and who’s viewing it dynam-
ically. This approach is similar to building a content-based recommendation system,
which we do in chapter 12.

 In the next two chapters, we demonstrate how we can use the term vector represen-
tation for text to cluster documents and build predictive models and text classifiers.

8.4 Summary
Apache Lucene is a Java-based open source text analysis toolkit and search engine.
The text analysis package for Lucene contains an Analyzer, which creates a Token-
Stream. A TokenStream is an enumeration of Token instances and is implemented by a
Tokenizer and a TokenFilter. You can create custom text analyzers by subclassing
available Lucene classes. In this chapter, we developed two custom text analyzers. The
first one normalizes the text, applies a stop word list, and uses the Porter stemming

Detected Terms

Figure 8.15 An example of automatically detecting relevant terms by analyzing text

239Resources
algorithm. The second analyzer normalizes the text, applies a stop word list, detects
phrases using a phrase dictionary, and injects synonyms.

 Next we discussed developing a text-analysis package, whose core interfaces are
independent of Lucene. A Tag class is the fundamental building block for this pack-
age. Tags that have the same stemmed values are considered equivalent. We intro-
duced the following entities: TagCache, through which Tag instances are created;
PhrasesCache, which contains the phrases of interest; SynonymsCache, which stores
synonyms used; and InverseDocFreqEstimator, which provides an estimate for the
inverse document frequency for a particular tag. All these entities are used by the
TextAnalyzer to create tags and develop a term (tag) magnitude vector representa-
tion for the text.

 The text analysis infrastructure developed can be used for developing the meta-
data associated with text. This metadata can be used to find other similar content, to
build predictive models, and to find other patterns by clustering the data. Having
built the infrastructure to decompose text into individual tags and magnitudes, we
next take a deeper look at clustering data. We use the infrastructure developed here,
along with the infrastructure to search the blogosphere developed in chapter 5, in the
next chapter.

8.5 Resources
 Ackerman, Rich. “Vector Model Information Retrieval.” 2003. http://www.hray.com/5264/

math.htm
 Gospodnetic, Otis, and Erik Hatcher. Lucene in Action. 2004. Manning.
 “Term vector theory and keywords.” http://forums.searchenginewatch.com/archive/

index.php/t-489.html

http://www.hray.com/5264/math.htm
http://www.hray.com/5264/math.htm
http://forums.searchenginewatch.com/archive/index.php/t-489.html
http://forums.searchenginewatch.com/archive/index.php/t-489.html

Discovering
 patterns with clustering
It’s fascinating to analyze results found by machine learning algorithms. One of the
most commonly used methods for discovering groups of related users or content is
the process of clustering, which we discussed briefly in chapter 7. Clustering algo-
rithms run in an automated manner and can create pockets or clusters of related
items. Results from clustering can be leveraged to build classifiers, to build predic-
tors, or in collaborative filtering. These unsupervised learning algorithms can pro-
vide insight into how your data is distributed.

 In the last few chapters, we built a lot of infrastructure. It’s now time to have some
fun and leverage this infrastructure to analyze some real-world data. In this chapter,
we focus on understanding and applying some of the key clustering algorithms.

This chapter covers
■ k-means, hierarchical clustering, and

probabilistic clustering
■ Clustering blog entries
■ Clustering using WEKA
■ Clustering using the JDM APIs
240

241Clustering blog entries
K-means, hierarchical clustering, and expectation maximization (EM) are three of the
most commonly used clustering algorithms.

 As discussed in section 2.2.6, there are two main representations for data.
The first is the low-dimension densely populated dataset; the second is the high-
dimension sparsely populated dataset, which we use with text term vectors and to rep-
resent user click-through. In this chapter, we look at clustering techniques for both
kinds of datasets.

 We begin the chapter by creating a dataset that contains blog entries retrieved
from Technorati.1 Next, we implement the k-means clustering algorithm to cluster
the blog entries. We leverage the infrastructure developed in chapter 5 to retrieve
blog entries and combine it with the text-analysis toolkit we developed in chapter 8.
We also demonstrate how another clustering algorithm, hierarchical clustering, can
be applied to the same problem. We look at some of the other practical data, such as
user clickstream analysis that can be analyzed in a similar manner. Next, we look at
how WEKA can be leveraged for clustering densely populated datasets and illustrate
the process using the EM algorithm. We end the chapter by looking at the clustering-
related interfaces defined by JDM and develop code to cluster instances using the
JDM APIs.

9.1 Clustering blog entries
In this section, we demonstrate the process of developing and applying various clus-
tering algorithms by discovering groups of related blog entries from the blogosphere.
This example will retrieve live blog entries from the blogosphere on the topic of “col-
lective intelligence” and convert them to tag vector format, to which we apply differ-
ent clustering algorithms.

 Figure 9.1 illustrates the various steps involved in this example. These steps are

1 Using the APIs developed in chapter 5 to retrieve a number of current blog
entries from Technorati.

2 Using the infrastructure developed in chapter 8 to convert the blog entries into
a tag vector representation.

3 Developing a clustering algorithm to cluster the blog entries. Of course, we
keep our infrastructure generic so that the clustering algorithms can be applied
to any tag vector representation.

We begin by creating the dataset associated with the blog entries. The clustering algo-
rithms implemented in WEKA are for finding clusters from a dense dataset. Therefore,
we develop our own implementation for different clustering algorithms. We begin
with implementing k-means clustering followed by hierarchical clustering algorithms.

 It’s helpful to look at the set of classes that we need to build for our clustering
infrastructure. We review these classes next.

1 You can use any of the blog-tracking providers we discussed in chapter 5.

242 CHAPTER 9 Discovering patterns with clustering
9.1.1 Defining the text clustering infrastructure

The key interfaces associated with clustering are shown in figure 9.2. The classes con-
sist of

■ Clusterer: the main interface for discovering clusters. It consists of a number
of clusters represented by TextCluster.

■ TextCluster: represents a cluster. Each cluster has an associated TagMagni-
tudeVector for the center of the cluster and has a number of TextDataItem
instances.

■ TextDataItem: represents each text instance. A dataset consists of a number of
TextDataItem instances and is created by the DataSetCreator.

■ DataSetCreator: creates the dataset used for the learning process.
Listing 9.1 contains the definition for the Clusterer interface.

Blogosphere

Technorati

Ping/crawl

Blog Entry

Chapter 5
Blog Search

API
TermVector

Chapter 8 API

Cluster Blog
Entries

Figure 9.1 The various
steps in our example of
clustering blog entries

<<Interface>>

DataSetCreator

createLearningData()

I

<<Interface>>

Clusterer

cluster()

I

I <<Interface>>

TextDataItem

getTagMagnitudeVector()

getClusterId():Integer

setClusterId(in clusterId:Integer):void

getData():Object

I <<Interface>>

TagMagnitudeVector

getTagMagnitudes()

getTagMagnitudeMap()

add(in o:TagMagnitudeVector):TagMagnitudeVector

add():TagMagnitudeVector

dotProduct(in o:TagMagnitudeVector):double

uses

center

0..*

0..*

<<Interface>>

TextCluster

I

clearItems:void

getCenter()

computeCenter():void

getClusterId():int

addDataItem():void

Figure 9.2 The interfaces associated with clustering text

243Clustering blog entries
package com.alag.ci.cluster;

import java.util.List;

public interface Clusterer {
 public List<TextCluster> cluster();
}

Clusterer has only one method to create the TextCluster instances:

List<TextCluster> cluster()

Listing 9.2 shows the definition of the TextCluster interface.

package com.alag.ci.cluster;

import com.alag.ci.textanalysis.TagMagnitudeVector;

public interface TextCluster {
 public void clearItems();
 public TagMagnitudeVector getCenter();
 public void computeCenter();
 public int getClusterId() ;
 public void addDataItem(TextDataItem item);
}

Each TextCluster has a unique ID associated with it. TextCluster has basic methods
to add data items and to recompute its center based on the TextDataItem associated
with it. The definition for the TextDataItem is shown in listing 9.3.

package com.alag.ci.cluster;

import com.alag.ci.textanalysis.TagMagnitudeVector;

public interface TextDataItem {
 public Object getData();
 public TagMagnitudeVector getTagMagnitudeVector() ;
 public Integer getClusterId();
 public void setClusterId(Integer clusterId);
}

Each TextDataItem consists of an underlying text data with its TagMagnitudeVector.
It has basic methods to associate it with a cluster. These TextDataItem instances are
created by the DataSetCreator as shown in listing 9.4.

package com.alag.ci.cluster;

import java.util.List;

public interface DataSetCreator {
 public List<TextDataItem> createLearningData() throws Exception ;
}

Listing 9.1 The definition for the Clusterer interface

Listing 9.2 The definition for the TextCluster interface

Listing 9.3 The definition for the TextDataItem interface

Listing 9.4 The definition for the DataSetCreator interface

244 CHAPTER 9 Discovering patterns with clustering
Each DataSetCreator creates a List of TextDataItem instances that’s used by the
Clusterer. Next, we use the APIs we developed in chapter 5 to search the blogo-
sphere. Let’s build the dataset that we use in our example.

9.1.2 Retrieving blog entries from Technorati

In this section, we define two classes. The first class, BlogAnalysisDataItem, repre-
sents a blog entry and implements the TextDataItem interface. The second class,
BlogDataSetCreatorImpl, implements the DataSetCreator and creates the data for
clustering using the retrieved blog entries.

 Listing 9.5 shows the definition for BlogAnalysisDataItem. The class is basically a
wrapper for a RetrievedBlogEntry and has an associated TagMagnitudeVector repre-
sentation for its text.

package com.alag.ci.blog.cluster.impl;

import com.alag.ci.blog.search.RetrievedBlogEntry;
import com.alag.ci.cluster.TextDataItem;
import com.alag.ci.textanalysis.TagMagnitudeVector;

public class BlogAnalysisDataItem implements TextDataItem {
 private RetrievedBlogEntry blogEntry = null;
 private TagMagnitudeVector tagMagnitudeVector = null;
 private Integer clusterId;

 public BlogAnalysisDataItem(RetrievedBlogEntry blogEntry,
 TagMagnitudeVector tagMagnitudeVector) {
 this.blogEntry = blogEntry;
 this.tagMagnitudeVector = tagMagnitudeVector;
 }

 public Object getData() {
 return this.getBlogEntry();
 }

 public RetrievedBlogEntry getBlogEntry() {
 return blogEntry;
 }

 public TagMagnitudeVector getTagMagnitudeVector() {
 return tagMagnitudeVector;
 }

 public double distance(TagMagnitudeVector other) {
 return this.getTagMagnitudeVector().dotProduct(other);
 }

 public Integer getClusterId() {
 return clusterId;
 }

 public void setClusterId(Integer clusterId) {
 this.clusterId = clusterId;
 }
}

Listing 9.5 The definition for the BlogAnalysisDataItem

245Clustering blog entries
Listing 9.6 shows the first part of the implementation for BlogDataSetCreatorImpl,
which implements the DataSetCreator interface for blog entries.

package com.alag.ci.blog.cluster.impl;

import java.io.IOException;
import java.util.*;

import com.alag.ci.blog.search.*;
import com.alag.ci.blog.search.BlogQueryParameter.QueryParameter;
import com.alag.ci.blog.search.impl.technorati.*;
import com.alag.ci.cluster.*;
import com.alag.ci.textanalysis.*;
import com.alag.ci.textanalysis.lucene.impl.*;

public class BlogDataSetCreatorImpl implements DataSetCreator {

 public List<TextDataItem> createLearningData()
 throws Exception {
 BlogQueryResult bqr = getBlogsFromTechnorati(
 "collective intelligence
 return getBlogTagMagnitudeVectors(bqr);
 }

 public BlogQueryResult getBlogsFromTechnorati(String tag)
 throws BlogSearcherException{
 BlogSearcher bs = new TechnoratiBlogSearcherImpl();

 BlogQueryParameter tagQueryParam =
 new TechnoratiTagBlogQueryParameterImpl();
 tagQueryParam.setParameter(QueryParameter.KEY,
 "xxxxx");
 tagQueryParam.setParameter(QueryParameter.LIMIT, "10");
 tagQueryParam.setParameter(QueryParameter.TAG,tag);
 tagQueryParam.setParameter(QueryParameter.LANGUAGE, "en");

 return bs.getRelevantBlogs(tagQueryParam);
 }

The BlogDataSetCreatorImpl uses the APIs developed in chapter 5 to retrieve blog
entries from Technorati. It queries for recent blog entries that have been tagged with
collective intelligence.

 Listing 9.7 shows the how blog data retrieved from Technorati is converted into a
List of TextDataItem objects.

 private List<TextDataItem> getBlogTagMagnitudeVectors(
 BlogQueryResult blogQueryResult) throws IOException {
 List<RetrievedBlogEntry> blogEntries =
 blogQueryResult.getRelevantBlogs();
 List<TextDataItem> result = new ArrayList<TextDataItem>();
 InverseDocFreqEstimator freqEstimator =
 new InverseDocFreqEstimatorImpl(blogEntries.size());
 TextAnalyzer textAnalyzer = new LuceneTextAnalyzer(

Listing 9.6 Retrieving blog entries from Technorati

Listing 9.7 Converting blog entries into a List of TextDataItem objects

Queries Technorati
to get blog entries

Converts to usable format

Uses Technorati
blog searcher

Use entries
tagged
“collective
intelligence”

Used
for idf

246 CHAPTER 9 Discovering patterns with clustering
 new TagCacheImpl(), freqEstimator);

 for (RetrievedBlogEntry blogEntry: blogEntries) {
 String text = composeTextForAnalysis(blogEntry);
 TagMagnitudeVector tmv =
 textAnalyzer.createTagMagnitudeVector(text);
 for (TagMagnitude tm: tmv.getTagMagnitudes()) {
 freqEstimator.addCount(tm.getTag());
 }
 }

 for (RetrievedBlogEntry blogEntry: blogEntries) {
 String text = composeTextForAnalysis(blogEntry);
 TagMagnitudeVector tmv =
 textAnalyzer.createTagMagnitudeVector(text);
 result.add(new BlogAnalysisDataItem(blogEntry,tmv));
 }
 return result;
 }

 public String composeTextForAnalysis(RetrievedBlogEntry blogEntry) {
 StringBuilder sb = new StringBuilder();
 if (blogEntry.getTitle() != null) {
 sb.append(blogEntry.getTitle());
 }
 if (blogEntry.getName() != null) {
 sb.append(" " + blogEntry.getName());
 }
 if (blogEntry.getAuthor() != null) {
 sb.append(" " + blogEntry.getAuthor());
 }
 if (blogEntry.getExcerpt() != null) {
 sb.append(" " + blogEntry.getExcerpt());
 }
 return sb.toString();
 }
}

The BlogDataSetCreatorImpl uses a simple implementation for estimating the fre-
quencies associated with each of the tags:

InverseDocFreqEstimator freqEstimator =
 new InverseDocFreqEstimatorImpl(blogEntries.size());

The method composeTextForAnalysis() combines text from the title, name, author,
and excerpt for analysis. It then uses a TextAnalyzer, which we developed in chapter 8,
to create a TagMagnitudeVector representation for the text.

 Listing 9.8 shows the implementation for the InverseDocFreqEstimatorImpl,
which provides an estimate for the tag frequencies.

package com.alag.ci.textanalysis.lucene.impl;

import java.util.*;

import com.alag.ci.textanalysis.InverseDocFreqEstimator;
import com.alag.ci.textanalysis.Tag;

Listing 9.8 The implementation for InverseDocFreqEstimatorImpl

Combines title,
name, author,
and excerpt

Learns tag
frequency
with tags

Iterates
over all
blog entries

247Clustering blog entries
public class InverseDocFreqEstimatorImpl
 implements InverseDocFreqEstimator {

 private Map<Tag,Integer> tagFreq = null;
 private int totalNumDocs;

 public InverseDocFreqEstimatorImpl(int totalNumDocs) {
 this.totalNumDocs = totalNumDocs;
 this.tagFreq = new HashMap<Tag,Integer>();
 }

 public double estimateInverseDocFreq(Tag tag) {
 Integer freq = this.tagFreq.get(tag);
 if ((freq == null) || (freq.intValue() == 0)){
 return 1.;
 }
 return Math.log(totalNumDocs/freq.doubleValue());
 }

 public void addCount(Tag tag) {
 Integer count = this.tagFreq.get(tag);
 if (count == null) {
 count = new Integer(1);
 } else {
 count = new Integer(count.intValue() + 1);
 }
 this.tagFreq.put(tag, count);
 }
}

The inverse document frequency for a tag is estimated by computing the log of the total
number of documents divided by the number of documents that the tag appears in:

Math.log(totalNumDocs/freq.doubleValue());

Note that the more rare a tag is, the higher its idf. With this background, we’re now
ready to implement our first text clustering algorithm. For this we use the k-means
clustering algorithm.

9.1.3 Implementing the k-means algorithms for text processing

The k-means clustering algorithm consists of the following steps:

1 For the specified number of k clusters, initialize the clusters at random. For this,
we select a point from the learning dataset and assign it to a cluster. Further, we
ensure that all clusters are initialized with different data points.

2 Associate each of the data items with the cluster that’s closest (most similar) to
it. We use the dot product between the cluster and the data item to measure the
closeness (similarity). The higher the dot product, the closer the two points.

3 Recompute the centers of the clusters using the data items associated with the
cluster.

4 Continue steps 2 and 3 until there are no more changes in the association
between data items and the clusters. Sometimes, some data items may oscillate
between two clusters, causing the clustering algorithm to not converge. There-
fore, it’s a good idea to also include a maximum number of iterations.

Estimates inverse
document frequency

Keeps count
for each tag

248 CHAPTER 9 Discovering patterns with clustering
We develop the code for k-means in more or less the same order. Let’s first look at the
implementation for representing a cluster. This is shown in listing 9.9.

package com.alag.ci.blog.cluster.impl;

import java.util.*;

import com.alag.ci.blog.search.RetrievedBlogEntry;
import com.alag.ci.cluster.*;
import com.alag.ci.textanalysis.*;
import com.alag.ci.textanalysis.termvector.impl.TagMagnitudeVectorImpl;

public class ClusterImpl implements TextCluster {
 private TagMagnitudeVector center = null;
 private List<TextDataItem> items = null;
 private int clusterId;

 public ClusterImpl(int clusterId) {
 this.clusterId = clusterId;
 this.items = new ArrayList<TextDataItem>();
 }

 public void computeCenter() {
 if (this.items.size() == 0) {
 return;
 }
 List<TagMagnitudeVector> tmList =
 new ArrayList<TagMagnitudeVector>();
 for (TextDataItem item: items) {
 tmList.add(item.getTagMagnitudeVector());
 }
 List<TagMagnitude> emptyList = Collections.emptyList();
 TagMagnitudeVector empty = new TagMagnitudeVectorImpl(emptyList);
 this.center = empty.add(tmList);
 }

 public int getClusterId() {
 return this.clusterId;
 }

 public void addDataItem(TextDataItem item) {
 items.add(item);
 }

 public TagMagnitudeVector getCenter() {
 return center;
 }

 public List<TextDataItem> getItems() {
 return items;
 }

 public void setCenter(TagMagnitudeVector center) {
 this.center = center;
 }

 public void clearItems() {
 this.items.clear();
 }

Listing 9.9 The implementation for ClusterImpl

Cluster center
represented by
TagMagnitudeVector

Center computed
by adding all

data points

249Clustering blog entries
 public String toString() {
 StringBuilder sb = new StringBuilder() ;
 sb.append("Id=" + this.clusterId);
 for (TextDataItem item: items) {
 RetrievedBlogEntry blog = (RetrievedBlogEntry) item.getData();
 sb.append("\nTitle=" + blog.getTitle());
 sb.append("\nExcerpt=" + blog.getExcerpt());
 }
 return sb.toString();
 }
}

The center of the cluster is represented by a TagMagnitudeVector and is computed by
adding the TagMagnitudeVector instances for the data items associated with the cluster.

 Next, let’s look at listing 9.10, which contains the implementation for the k-means
algorithm.

package com.alag.ci.blog.cluster.impl;

import java.util.*;

import com.alag.ci.cluster.*;

public class TextKMeansClustererImpl implements Clusterer{
 private List<TextDataItem> textDataSet = null;
 private List<TextCluster> clusters = null;
 private int numClusters ;

 public TextKMeansClustererImpl(List<TextDataItem> textDataSet,
 int numClusters) {
 this.textDataSet = textDataSet;
 this.numClusters = numClusters;
 }

 public List<TextCluster> cluster() {
 if (this.textDataSet.size() == 0) {
 return Collections.emptyList();
 }
 this.intitializeClusters();
 boolean change = true;
 int count = 0;
 while ((count ++ < 100) && (change)) {
 clearClusterItems();
 change = reassignClusters();
 computeClusterCenters();
 }
 return this.clusters;
 }

The dataset for clustering, along with the number of clusters, is specified in the
constructor:

 public TextKMeansClustererImpl(List<TextDataItem> textDataSet,
 int numClusters)

Listing 9.10 The core of the TextKMeansClustererImpl implementation

Initialize
clusters

Reassign data
items to clusters

Recompute centers
for clusters

250 CHAPTER 9 Discovering patterns with clustering
As explained at the beginning of the section, the algorithm is fairly simple. First, the
clusters are initialized at random:

this.intitializeClusters();

This is followed by reassigning the data items to the closest clusters:

reassignClusters()

and recomputing the centers of the cluster:

computeClusterCenters()

Listing 9.11 shows the code for initializing the clusters.

 private void intitializeClusters() {
 this.clusters = new ArrayList<TextCluster>();
 Map<Integer,Integer> usedIndexes = new HashMap<Integer,Integer>();
 for (int i = 0; i < this.numClusters; i++) {
 ClusterImpl cluster = new ClusterImpl(i);
 cluster.setCenter(getDataItemAtRandom(usedIndexes).
 getTagMagnitudeVector());
 this.clusters.add(cluster);
 }
 }

 private TextDataItem getDataItemAtRandom(
 Map<Integer,Integer> usedIndexes) {
 boolean found = false;
 while (!found) {
 int index = (int)Math.floor(
 Math.random()*this.textDataSet.size());
 if (!usedIndexes.containsKey(index)) {
 usedIndexes.put(index, index);
 return this.textDataSet.get(index);
 }
 }
 return null;
 }

For each of the k clusters to be initialized, a data point is selected at random. The algo-
rithm keeps track of the points selected and ensures that the same point isn’t rese-
lected. Listing 9.12 shows the remaining code associated with the algorithm.

 private boolean reassignClusters() {
 int numChanges = 0;
 for (TextDataItem item: this.textDataSet) {
 TextCluster newCluster = getClosestCluster(item);
 if ((item.getClusterId() == null) ||
 (item.getClusterId().intValue() !=
 newCluster.getClusterId())) {
 numChanges ++;

Listing 9.11 Initializing the clusters

Listing 9.12 Recomputing the clusters

251Clustering blog entries
 item.setClusterId(newCluster.getClusterId());
 }
 newCluster.addDataItem(item);
 }
 return (numChanges > 0);
 }

 private void computeClusterCenters() {
 for (TextCluster cluster: this.clusters) {
 cluster.computeCenter();
 }
 }

 private void clearClusterItems(){
 for (TextCluster cluster: this.clusters) {
 cluster.clearItems();
 }
 }

 private TextCluster getClosestCluster(TextDataItem item) {
 TextCluster closestCluster = null;
 Double hightSimilarity = null;
 for (TextCluster cluster: this.clusters) {
 double similarity =
 cluster.getCenter().dotProduct(item.getTagMagnitudeVector());
 if ((hightSimilarity == null) ||
 (hightSimilarity.doubleValue() < similarity)) {
 hightSimilarity = similarity;
 closestCluster = cluster;
 }
 }
 return closestCluster;
 }

 public String toString() {
 StringBuilder sb = new StringBuilder();
 for (TextCluster cluster: clusters) {
 sb.append("\n\n");
 sb.append(cluster.toString());
 }
 return sb.toString();
 }
}

The similarity between a cluster and a data item is computed by taking the dot prod-
uct of the two TagMagnitudeVector instances:

 double similarity =
 cluster.getCenter().dotProduct(item.getTagMagnitudeVector());

We use the following simple main program:

 public static final void main(String [] args) throws Exception {
 DataSetCreator bc = new BlogDataSetCreatorImpl();
 List<TextDataItem> blogData = bc.createLearningData();
 TextKMeansClustererImpl clusterer = new
 TextKMeansClustererImpl(blogData,4);
 clusterer.cluster();
 }

Dot product shows
similarity

252 CHAPTER 9 Discovering patterns with clustering
The main program creates four clusters. Running this program yields different
results, as the blog entries being created change dynamically, and different clustering
runs with the same data can lead to different clusters depending on how the cluster
nodes are initialized. Listing 9.13 shows a sample result from one of the clustering
runs. Note that sometimes duplicate blog entries are returned from Technorati and
that they fall in the same cluster.

Id=0
Title=Viel um die Ohren
Excerpt=Leider komme ich zur Zeit nicht so viel zum Bloggen, wie ich gerne
würde, da ich mitten in 3 Projekt
Title=Viel um die Ohren
Excerpt=Leider komme ich zur Zeit nicht so viel zum Bloggen, wie ich gerne
würde, da ich mitten in 3 Projekt

Id=1
Title=Starchild Aug. 31: Choosing Simplicity & Creative Compassion..&
Releasing "Addictions" to Suffering
Excerpt=Choosing Simplicity and Creative Compassion...and Releasing
"Addictions" to SufferingAn article and
Title=Interesting read on web 2.0 and 3.0
Excerpt=I found these articles by Tim O'Reilly on web 2.0 and 3.0 today.
Quite an interesting read and nice

Id=2
Title=Corporate Social Networks
Excerpt=Corporate Social Networks Filed under: Collaboration,
Social-networking, collective intelligence, social-software — dorai @
10:28 am Tags: applicatio

Id=3
Title=SAP Gets Business Intelligence. What Do You Get?
Excerpt=SAP Gets Business Intelligence. What Do You Get? [IMG]
Posted by: Michael Goldberg in News
Title=SAP Gets Business Intelligence. What Do You Get?
Excerpt=SAP Gets Business Intelligence. What Do You Get? [IMG]
Posted by: Michael Goldberg in News
Title=Che Guevara, presente!
Excerpt=Che Guevara, presente! Posted by Arroyoribera on October 7th, 2007
Forty years ago, the Argentine
Title=Planet 2.0 meets the USA
Excerpt= This has been a quiet blogging week due to FLACSO México's visit
to the University of Minnesota. Th
Title=collective intelligence excites execs
Excerpt=collective intelligence excites execs zdnet.com's dion hinchcliffe
provides a tremendous post cov

In this section, we looked at the implementation of the k-means clustering algorithm.
K-means is one of the simplest clustering algorithms, and it gives good results.

 In k-means clustering, we provide the number of clusters. There’s no theoretical
solution to what is the optimal value for k. You normally try different values for k to
see the effect on overall criteria, such as minimizing the overall distance between

Listing 9.13 Results from a clustering run

253Clustering blog entries
each point and its cluster mean. Let’s look at an alternative algorithm called hierar-
chical clustering.

9.1.4 Implementing hierarchical clustering algorithms for text processing

Hierarchical Agglomerative Clustering (HAC) algorithms begin by assigning a cluster
to each item being clustered. Then they compute the similarity between the various
clusters and create a new cluster by merging the two clusters that were most similar.
This process of merging clusters continues until you’re left with only one cluster. This
clustering algorithm is called agglomerative, since it continuously merges the clusters.

 There are different versions of this algorithm based on how the similarity between
two clusters is computed. The single-link method computes the distance between two
clusters as the minimum distance between two points, one each of which is in each
cluster. The complete-link method, on the other hand, computes the distance as the
maximum of the similarities between a member of one cluster and any of the mem-
bers in another cluster. The average-link method calculates the average similarity
between points in the two clusters.

 We demonstrate the implementation for the HAC algorithm by computing a mean
for a cluster, which we do by adding the TagMagnitudeVector instances for the chil-
dren. The similarity between two clusters is computed by using the dot product of the
two centers.

 To implement the hierarchical clustering algorithm, we need to implement four
additional classes, as shown in figure 9.3. These classes are

■ HierCluster: an interface for representing a hierarchical cluster
■ HierClusterImpl: implements the cluster used for a hierarchical clustering

algorithm
■ HierDistance: an object used to represent the distance between two clusters
■ HierarchialClusteringImpl: the implementation for the hierarchical cluster-

ing algorithm

Figure 9.3 The classes for implementing the hierarchical agglomerative clustering algorithm

254 CHAPTER 9 Discovering patterns with clustering
The interface for HierCluster is shown in listing 9.14. Each instance of a HierCluster
has two children clusters and a method for computing the similarity with another
cluster.

package com.alag.ci.cluster.hiercluster;

import com.alag.ci.cluster.TextCluster;

public interface HierCluster extends TextCluster {
 public HierCluster getChild1() ;
 public HierCluster getChild2();
 public double getSimilarity() ;
 public double computeSimilarity(HierCluster o);
}

You can implement multiple variants of a hierarchical clustering algorithm by having
different implementations of the computeSimilarity method. One such implementa-
tion is shown in listing 9.15, which shows the implementation for HierClusterImpl.

package com.alag.ci.blog.cluster.impl;

import java.io.StringWriter;

import com.alag.ci.blog.search.RetrievedBlogEntry;
import com.alag.ci.cluster.TextDataItem;
import com.alag.ci.cluster.hiercluster.HierCluster;

public class HierClusterImpl extends ClusterImpl implements HierCluster {
 private HierCluster child1 = null;
 private HierCluster child2 = null;
 private double similarity;

 public HierClusterImpl(int clusterId,HierCluster child1,
 HierCluster child2, double similarity,
 TextDataItem dataItem) {
 super(clusterId);
 this.child1 = child1;
 this.child2 = child2;
 this.similarity = similarity;
 if (dataItem != null) {
 this.addDataItem(dataItem);
 }
 }

 public HierCluster getChild1() {
 return child1;
 }

 public HierCluster getChild2() {
 return child2;
 }

 public double getSimilarity() {
 return similarity;

Listing 9.14 The interface for HierCluster

Listing 9.15 The implementation for HierClusterImpl

Constructor

255Clustering blog entries
 }

 public double computeSimilarity (HierCluster o) {
 return this.getCenter().dotProduct(o.getCenter());
 }

 public String toString() {
 StringWriter sb = new StringWriter();
 String blogDetails = getBlogDetails();
 if (blogDetails != null) {
 sb.append("Id=" + this.getClusterId() + " " + blogDetails);
 } else {
 sb.append("Id=" + this.getClusterId() + " similarity="+
 this.similarity);
 }
 if (this.getChild1() != null) {
 sb.append(" C1=" + this.getChild1().getClusterId());
 }
 if (this.getChild2() != null) {
 sb.append(" C2=" + this.getChild2().getClusterId());
 }
 return sb.toString();
 }

 private String getBlogDetails() {
 if ((this.getItems() != null) && (this.getItems().size() > 0)) {
 TextDataItem textDataItem = this.getItems().get(0);
 if (textDataItem != null) {
 RetrievedBlogEntry blog =
 (RetrievedBlogEntry) textDataItem.getData();
 return blog.getTitle();
 }
 }
 return null;
 }
}

The implementation for HierClusterImpl is straightforward. Each instance of
HierClusterImpl has two children and a similarity. The toString() and getBlog-
Details() methods are added to display the cluster.

 Next, let’s look at the implementation for the HierDistance class, which is shown
in listing 9.16.

package com.alag.ci.blog.cluster.impl;

import com.alag.ci.cluster.hiercluster.HierCluster;

public class HierDistance implements Comparable<HierDistance> {
 private HierCluster c1 = null;
 private HierCluster c2 = null;
 private double similarity ;
 private int hashCode;

 public HierDistance(HierCluster c1, HierCluster c2) {
 this.c1 = c1;
 this.c2 = c2;

Listing 9.16 The implementation for HierDistance

Computes similarity
between clusters

Prints out details
of blog entry

Implements Comparable
interface for sorting

256 CHAPTER 9 Discovering patterns with clustering
 hashCode = ("" + c1.getClusterId()).hashCode() +
 ("" + c2.getClusterId()).hashCode();
 }

 public boolean equals(Object obj) {
 return (this.hashCode() == obj.hashCode());
 }
 public int hashCode() {
 return this.hashCode;
 }

 public HierCluster getC1() {
 return c1;
 }

 public HierCluster getC2() {
 return c2;
 }

 public double getSimilarity() {
 return this.similarity;
 }

 public boolean containsCluster(HierCluster hci) {
 if ((this.getC1() == null) || (this.getC2() == null)) {
 return false;
 }
 if (hci.getClusterId() == this.getC1().getClusterId()) {
 return true;
 }
 if (hci.getClusterId() == this.getC2().getClusterId()) {
 return true;
 }
 return false;
 }

 public void setSimilarity(double similarity) {
 this.similarity = similarity;
 }

 public int compareTo(HierDistance o) {
 double diff = o.getSimilarity() - this.similarity;
 if (diff > 0) {
 return 1;
 } else if (diff < 0) {
 return -1;
 }
 return 0;
 }
}

We use an instance of HierDistance to represent the distance between two clusters.
Note that the similarity between two clusters, A and B, is the same as the distance
between cluster B and A—the similarity is order-independent. The following compu-
tation for the hashCode:

("" + c1.getClusterId()).hashCode() +
 ("" + c2.getClusterId()).hashCode();

Overrides equals and
hashcode methods

Two distances
compared based
on similarities

257Clustering blog entries
ensures that two instances of HierDistance with the same two children are equivalent.
containsCluster() is a utility method that will be used by the clustering algorithm to
prune out links that are no longer valid.

 Finally, we look at the first part of the HierarchialClusteringImpl algorithm,
which is shown in listing 9.17. This part shows the implementation of the clustering
algorithm in the cluster method.

package com.alag.ci.blog.cluster.impl;

import java.io.StringWriter;
import java.util.*;

import com.alag.ci.cluster.*;
import com.alag.ci.cluster.hiercluster.HierCluster;

public class HierarchialClusteringImpl implements Clusterer {
 private Map<Integer,HierCluster> availableClusters = null;
 private List<TextDataItem> textDataSet = null;

 private HierCluster rootCluster ;

 private int idCount = 0;
 private Map<HierDistance,HierDistance> allDistance = null;

 public HierarchialClusteringImpl(List<TextDataItem> textDataSet) {
 this.textDataSet = textDataSet;
 this.availableClusters = new HashMap<Integer,HierCluster>();
 this.allDistance = new HashMap<HierDistance,HierDistance>();
 }

 public List<TextCluster> cluster() {
 createInitialClusters();
 while (allDistance.size() > 0) {
 addNextCluster();
 }
 List<TextCluster> clusters = new ArrayList<TextCluster>();
 clusters.add(this.rootCluster);
 return clusters;
 }

The clustering algorithm in HierarchialClusteringImpl is fairly simple. It first cre-
ates an initial list of clusters:

 createInitialClusters();

Next it creates a new cluster from the list of available clusters. This process continues
until you’re left with only one cluster:

 while (allDistance.size() > 0) {
 addNextCluster();
 }

Let’s look at the method to create the initial set of clusters, contained in listing 9.18.

Listing 9.17 The cluster method for HierarchialClusteringImpl

Keeps track
of available
clusters

Root cluster at
end of clustering

Distances
between
various
clusters

Clustering
algorithm

258 CHAPTER 9 Discovering patterns with clustering
 private void createInitialClusters() {
 createInitialSingleItemClusters();
 computeInitialDistances();
 }

 private void createInitialSingleItemClusters() {
 for (TextDataItem dataItem: this.textDataSet) {
 HierClusterImpl cluster = new HierClusterImpl(this.idCount ++,
 null, null, 1.,dataItem);
 cluster.setCenter(dataItem.getTagMagnitudeVector());
 this.availableClusters.put(cluster.getClusterId(),cluster);
 }
 }

 private void computeInitialDistances() {
 for (HierCluster cluster: this.availableClusters.values()) {
 for (HierCluster otherCluster:
 this.availableClusters.values()) {
 if (cluster.getClusterId() !=
 otherCluster.getClusterId()) {
 HierDistance hd =
 new HierDistance(cluster,otherCluster);
 if (!this.allDistance.containsKey(hd)) {
 double similarity =
 cluster.computeSimilarity(otherCluster);
 hd.setSimilarity(similarity);
 this.allDistance.put(hd, hd);
 }
 }
 }
 }
 }

Creating an initial set of clusters consists of two steps. First, we create a cluster for each
data item:

createInitialSingleItemClusters();

Second, we compute the distances between each of the clusters using compute-
InitialDistances(). These distances are stored in allDistances.

 Next, let’s look at the code to add a new cluster to the initial set of clusters, shown
in listing 9.19.

 private void addNextCluster() {
 List<HierDistance> sortDist = new ArrayList<HierDistance>();
 sortDist.addAll(this.allDistance.keySet());
 Collections.sort(sortDist);
 HierDistance hd = sortDist.get(0);
 this.allDistance.remove(hd);

 HierCluster cluster = createNewCluster(hd);
 pruneDistances(hd.getC1(), hd.getC2(), sortDist);

Listing 9.18 Creating the initial clusters in HierarchialClusteringImpl

Listing 9.19 Merging the next cluster in HierarchialClusteringImpl

Create initial set of clusters
Compute initial set of distances

Get clusters with
best similarity

Create new cluster
Remove invalid
distances

259Clustering blog entries
 addNewClusterDistances(cluster);

 if (this.allDistance.size() == 0) {
 this.rootCluster = cluster;
 }
 }

 private HierCluster createNewCluster(HierDistance hd) {
 HierClusterImpl cluster = new HierClusterImpl(this.idCount ++,
 hd.getC1(), hd.getC2(), hd.getSimilarity(),null);
 cluster.setCenter(hd.getC1().getCenter().add(
 hd.getC2().getCenter()));
 this.availableClusters.put(cluster.getClusterId(),cluster);
 this.availableClusters.remove(hd.getC1().getClusterId());
 this.availableClusters.remove(hd.getC2().getClusterId());
 return cluster;
 }

 private void pruneDistances(HierCluster c1, HierCluster c2,
 List<HierDistance> sortDist) {
 for (HierDistance hierDistance: sortDist) {
 if ((hierDistance.containsCluster(c1)) ||
 (hierDistance.containsCluster(c2))) {
 this.allDistance.remove(hierDistance);
 }
 }
 }

 private void addNewClusterDistances(HierCluster cluster) {
 for (HierCluster hc: this.availableClusters.values()) {
 if (hc.getClusterId() != cluster.getClusterId()) {
 HierDistance hierDistance = new HierDistance(cluster,hc);
 double similarity =
 cluster.getCenter().dotProduct(hc.getCenter());
 hierDistance.setSimilarity(similarity);
 this.allDistance.put(hierDistance, hierDistance);
 }
 }
 }

Adding a new cluster involves finding the HierDistance that has the highest similarity
among all the distance measures. All the distances are sorted, and the best one is used
for merging clusters:

 Collections.sort(sortDist);
 HierDistance hd = sortDist.get(0);

The method pruneDistances() removes distances associated with the two clusters
that have been merged, while the method addNewClusterDistances() adds the dis-
tances from the new cluster to all the other clusters that can be merged.

 Listing 9.20 shows the code associated with printing the details from the hierarchi-
cal clustering algorithm.

 public String toString() {
 StringWriter sb = new StringWriter();

Listing 9.20 Printing the results from HierarchialClusteringImpl

Add distances from new cluster

Check if we have root node

260 CHAPTER 9 Discovering patterns with clustering
 sb.append("Num of clusters = " + this.idCount + "\n");
 sb.append(printClusterDetails(this.rootCluster,""));
 return sb.toString();
 }

 private String printClusterDetails(
 HierCluster cluster, String append) {
 StringWriter sb = new StringWriter();
 if (cluster != null) {
 sb.append(cluster.toString());
 String tab = "\t" + append;
 if (cluster.getChild1() != null) {
 sb.append("\n" + tab + "C1=" +
 printClusterDetails(cluster.getChild1(),tab));
 }
 if (cluster.getChild2() != null) {
 sb.append("\n" + tab + "C2="
 +printClusterDetails(cluster.getChild2(),tab));
 }
 }
 return sb.toString();
 }
}

There’s nothing complicated in printing the details of the cluster that’s created. The
code simply formats the results; an example is shown in listing 9.21. This listing shows
the results from one of the clustering runs. Note that the titles of the blog entries are
shown wherever we have a leaf cluster with a blog entry. Each cluster has a unique ID
associated with it and there are a total of 10 clusters.

Num of clusters = 19
Id=18 similarity=0.00325633040335101 C1=17 C2=9
 C1=Id=17 similarity=0.02342920655844054 C1=16 C2=14
 C1=Id=16 similarity=0.42247390457827866 C1=15 C2=13
 C1=Id=15 similarity=0.04164026486125777 C1=10 C2=6
 C1=Id=10 similarity=0.6283342717309606 C1=1 C2=0
 C1=Id=1 Vote for Cool Software
 C2=Id=0 Vote for Cool Software
 C2=Id=6 Collective Intelligence Applied to the Patent
Process
 C2=Id=13 similarity=0.8021265050360485 C1=12 C2=5
 C1=Id=12 similarity=0.676456586660375 C1=11 C2=7
 C1=Id=11 similarity=0.5542920709331453 C1=4 C2=8
 C1=Id=4 Collective Intelligence Applied to the
Patent Process
 C2=Id=8 Collective Intelligence Applied to the
Patent Process
 C2=Id=7 Collective Intelligence Applied to the Patent Process
 C2=Id=5 Collective Intelligence Applied to the Patent Process
 C2=Id=14 similarity=0.0604642261218513 C1=2 C2=3
 C1=Id=2 Wall Street meets social networking
 C2=Id=3 10 Ways to Build More Collaborative Teams
 C2=Id=9 Rencontres ICC’07 : on se voit là bas ?

Listing 9.21 Sample output from hierarchical clustering applied to blog entries

261Clustering blog entries
This output was generated using the following code:

 DataSetCreator bc = new BlogDataSetCreatorImpl();
 List<TextDataItem> blogData = bc.createLearningData();
 Clusterer clusterer = new HierarchialClusteringImpl(
 blogData);
 clusterer.cluster();
 System.out.println(clusterer);

Hierarchical algorithms don’t scale well. If n is the number of items then the order of
complexity is n2. Hierarchical algorithms, along with k-means, give good clustering
results. Next, let’s look at the expectation maximization clustering algorithm.

9.1.5 Expectation maximization and other examples
of clustering high-dimension sparse data

An alternative approach to clustering is to use a model to fit the data. The clustering
algorithm then tries to optimize the fit between the model and the data. Typically, for
continuous attributes, the Gaussian distribution is used to model a variable. Each clus-
ter has a mean and variance associated with it. Given another point, we can compute
the probability of that point being a part of that distribution. This probability is a
number between 0 and 1. The higher the probability, the higher the chance that the
point belongs to the cluster.

 The expectation maximization algorithm (EM) is a general-purpose framework for
estimating a set of Gaussian distributions for modeling data. Unlike the k-means algo-
rithm, the data points aren’t associated with a single cluster; the association is soft in
that they’re associated with a cluster with a probability for each. Adapting the process
to clustering, you can use the following clustering algorithms:

■ Initialize the k clusters at random—Each cluster has a mean and variance.
■ Expectation step—Compute the probability that a point belongs to the cluster.
■ Maximization step—Maximize the parameters of the distribution to maximize

the likelihood of the items.

The algorithm stops when the change in the likelihood of the objects after each iter-
ation becomes small. In section 9.2, we apply the EM clustering algorithm using
WEKA.

 Analyzing the data corresponding to user click-through in a web application dur-
ing a period of time leads to a high-dimension dataset, which is sparse. This is similar
to the term vector representation for text. In this case, each document that a user can
visit forms the terms, while the frequency count of visitation corresponds to the weight
of the vector.

 In chapter 3, we looked at user tagging. Analyzing the set of tags created by users
leads to analysis similar to that done in this section. The tags created or visited by a
user can be used to cluster similar users. Next, we look at clustering blog entries
using WEKA.

262 CHAPTER 9 Discovering patterns with clustering
9.2 Leveraging WEKA for clustering
Figure 7.13 in section 7.2.2 showed the classes associated with WEKA for clustering. In
this section, we work through the same example of clustering blog data using the
WEKA APIs.

 You may recall that a dataset in WEKA is represented by the Instances class.
Instances are composed of an Instance object, one for each data item. Attributes
for the dataset are represented by the Attribute class. To apply the WEKA clustering
algorithm, we do the following steps:

1 Convert the blog data from Technorati into an Instances representation.
2 Create an instance of the Clusterer and associate the learning data.
3 Evaluate the results of clustering.

It’s helpful to go through figure 9.4, which maps the classes that we will be using in
this section.

 The class WEKABlogDataSetClusterer, which extends BlogDataSetCreatorImpl, is
the main class that we develop in this section. It creates an instance of the dataset, of
type Instances. It uses the EM class for applying the expectation maximization algo-
rithm to the Instances class. The ClusterEvaluation class is used for evaluating the
result from EM, which is an instance of the Clusterer class.

 In this section, we first create the dataset for using the WEKA APIs. This will be fol-
lowed by using the EM class to cluster the blog entries, and finally we evaluate the qual-
ity of the clustering model.

Figure 9.4 The classes for implementing the hierarchical agglomerative clustering algorithm

263Leveraging WEKA for clustering
9.2.1 Creating the learning dataset

To create a learning dataset in WEKA, we first need to define attributes. We take a sim-
ple approach of treating each tag as an attribute. Clearly, representing text with tags
leads to a high-dimensional dataset. Typically, based on your domain, you may have
well over 100,000 tag instances. A common approach is to reduce the dimension space
by pruning the number of tags associated with each document. In our example of clas-
sifying blog entries, for 10 blog instances, there were typically around 150 unique tags.

 Listing 9.22 shows the first part of the WEKABlogDataSetClusterer class, which
deals with creating an Instances dataset by retrieving live blog entries from Tech-
norati. This class extends the BlogDataSetCreatorImpl class that we developed in the
previous section.

package com.alag.ci.blog.cluster.weka.impl;

import java.util.*;

import weka.clusterers.*;
import weka.core.*;

import com.alag.ci.blog.cluster.impl.BlogDataSetCreatorImpl;
import com.alag.ci.blog.search.RetrievedBlogEntry;
import com.alag.ci.cluster.TextDataItem;
import com.alag.ci.textanalysis.*;
import com.alag.ci.textanalysis.Tag;

public class WEKABlogDataSetClusterer extends BlogDataSetCreatorImpl {
 private List<TextDataItem> blogEntries = null;

 public Instances createLearningDataSet() throws Exception {
 this.blogEntries = createLearningData();
 FastVector allAttributes = createAttributes();
 Instances trainingDataSet = new Instances("blogClustering",
 allAttributes, blogEntries.size());
 int numAttributes = allAttributes.size();
 Collection<Tag> allTags = this.getAllTags();
 for (TextDataItem dataItem : blogEntries) {
 Instance instance = createNewInstance(numAttributes,
 trainingDataSet,
 allTags, dataItem);
 trainingDataSet.add(instance);
 }
 return trainingDataSet;
 }

 private FastVector createAttributes() {
 Collection<Tag> allTags = this.getAllTags();
 FastVector allAttributes = new FastVector(allTags.size());
 for (Tag tag : allTags) {
 Attribute tagAttribute = new Attribute(tag.getDisplayText());
 allAttributes.addElement(tagAttribute);
 }
 return allAttributes;

Listing 9.22 The first part of WEKABlogDataSetClusterer

Keeps list of
blog entries

Each tag
corresponds

to an attribute

Each entry corresponds
to an instance

Each tag is
an attribute

264 CHAPTER 9 Discovering patterns with clustering
 }

 private Instance createNewInstance(int numAttributes,
 Instances trainingDataSet, Collection<Tag> allTags,
 TextDataItem dataItem) {
 Instance instance = new Instance(numAttributes);
 instance.setDataset(trainingDataSet);
 int index = 0;
 TagMagnitudeVector tmv = dataItem.getTagMagnitudeVector();
 Map<Tag, TagMagnitude> tmvMap = tmv.getTagMagnitudeMap();
 for (Tag tag : allTags) {
 TagMagnitude tm = tmvMap.get(tag);
 if (tm != null) {
 instance.setValue(index++, tm.getMagnitude());
 } else {
 instance.setValue(index++, 0.);
 }
 }
 return instance;
 }

The method createLearningDataSet first gets the List of TextDataItem instances:

this.blogEntries = createLearningData();

Attribute instances are created by iterating over all the tag entries:

 for (Tag tag : allTags) {
 Attribute tagAttribute = new Attribute(tag.getDisplayText());
 allAttributes.addElement(tagAttribute);

A new Instance is created by using the TagMagnitudeVector and iterating over all the
tag instances. A tag attribute that isn’t present in the TagMagnitudeVector instance
has a magnitude of 0.

 It’s useful to look at listing 9.23, which shows a typical dump of the Instances
class. The dump was created using the toString method for the Instances class.

………….. //many more attributes
@attribute zeit numeric
@attribute choosing numeric
@attribute da numeric
@attribute um numeric
@attribute sufferingan numeric
@attribute gerne numeric
@attribute articles numeric
@attribute throu numeric
@attribute years numeric
@attribute advice numeric
@attribute corporate numeric

@data
0.159381,0.228023,0,0,0,0,0,0,0,0,0,0,0.159381,0.159381,0.159381,0.159381,0
,0.159381,0,0,0,0.159381,0,0,0.159381,0,0,0,0,0,0.09074,0,0.09074,0,0.22802
3,0,0,0,0,0,0,0.159381,0,0,0,0,0,0,0.159381,0,0,0,0.159381,0,0.228023,0.228

Listing 9.23 An example dump of the Instances class

Magnitude
corresponds
to input value
for attribute

265Leveraging WEKA for clustering
023,0,0,0,0,0,0,0,0,0.228023,0.159381,0.228023,0,0,0,0,0,0.159381,0,0,0.159
381,0,0.228023,0.228023,0,0,0,0,0.09074,0,0,0,0,0,0,0,0.159381,0.09074,0,0,
0,0.159381,0,0,0.09074,0,0.159381,0,0,0,0.159381,0,0,0,0.159381,0,0.09074,0
,0,0,0,0,0,0,0,0.228023,0,0,0
0.21483,0,0,0,0,0,0,0,0,0,0,0,0.21483,0.21483,0.21483,0.21483,0,0.21483,0,0
,0,0.21483,0,0,0.21483,0,0,0,0,0,0.122308,0.21483,0,0,0,0,0,0,0,0,0,0,0,0,0
,0.21483,0,0,0,0,0.307353,0,0.21483
,0,0,0.21483,0,0,0,0.21483,0.21483,0,0,0.122308,0,0,0,0,0,0,0,0,0.122308,0,
0,0,0.21483,0,0,0.122308,0,0.21483,0,0,0,0.21483,0,0,0,0.21483,0,0.122308,0
,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0.096607,0,0,0,0,0,0,0,0,0.18476,0,0,0.369519,0,0,0,0
,0,0,0,0,0.073523,0.554279,0,0,0,0,0,0,0,0.129141,0.18476,0,0,0,0,0,0.12914
1,0,0,0.18476,0.387424,0.18476,0,0,
0,0,0,0,0,0,0,0,0,0,0,0.18476,0,0,0,0.129141,0,0,0,0,0,0,0,0,0.18476,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.369519
……………….

The first part of the dump enumerates all the attributes. Each tag instance is a
numeric attribute, which takes values between 0 and 1. The data associated with three
blog entries is also shown in the listing. Note that the rows are sparsely populated with
most of the values being zero.

9.2.2 Creating the clusterer

Now that we’ve created the dataset, let’s look at the second part of the implementa-
tion for WEKABlogDataSetClusterer, which corresponds to creating an instance of a
Clusterer and clustering the dataset we just created. Listing 9.24 has the code.

 public void cluster() throws Exception {
 Instances instances = createLearningDataSet();

 Clusterer clusterer = getClusterer(instances);

 evaluateCluster(clusterer, instances);
 }

 private Clusterer getClusterer(Instances instances) throws Exception {
 EM em = new EM();
 em.setNumClusters(-1);
 em.setMaxIterations(100);
 em.buildClusterer(instances);
 return em;
 }

The clustering code is simple and consists of three steps. First, we create the learning
dataset:

Instances instances = createLearningDataSet();

Next, using this Instances, we create an instance of the Clusterer. In our example,
we use the expectation maximization (EM) algorithm. The class EM represents an
instance of the EM algorithm. We use the no-argument constructor:

 EM em = new EM();

Listing 9.24 The second part of WEKABlogDataSetClusterer

Creates dataset
for clustering

Gets Clusterer instance

Evaluates Clusterer

Selects number of clusters
by cross validation

266 CHAPTER 9 Discovering patterns with clustering
Next, we set the parameters for the clusterer:

 em.setNumClusters(-1);
 em.setMaxIterations(100);

When the number of clusters is set to -1, EM uses cross validation to select the number
of clusters to be used. The algorithm splits the dataset into 10 instances. It assigns the
number of clusters to be 1 and then performs tenfold cross validation. The log likeli-
hood is computed for each of the 10 runs and averaged. If the log likelihood
increases, then the number of clusters is increased by one and the whole process con-
tinues. The Clusterer instance clusters the dataset using the following code:

 em.buildClusterer(instances);

Next, let’s look at how we can evaluate the results from clustering.

9.2.3 Evaluating the clustering results

To evaluate the results from clustering, we need to use a ClusterEvaluation instance.
Listing 9.25 shows the third part of the code for WEKABlogDataSetClusterer, in which
we evaluate the results from clustering.

 private ClusterEvaluation evaluateCluster(Clusterer clusterer,
 Instances instances) throws Exception {
 ClusterEvaluation eval = new ClusterEvaluation();
 eval.setClusterer(clusterer);
 eval.evaluateClusterer(instances);
 String evalString = eval.clusterResultsToString();
 System.out.println(evalString);

 int numClusters = eval.getNumClusters();
 double[] assignments = eval.getClusterAssignments();
 System.out.println("NumClusters=" + numClusters);

 Map<Integer, List<RetrievedBlogEntry>> assignMap =
 associateInstancesWithClusters(assignments);
 printClusterEntries(assignMap);
 return eval;
 }

 private Map<Integer, List<RetrievedBlogEntry>>
associateInstancesWithClusters(double[] assignments) {

 int index = 0;
 Map<Integer, List<RetrievedBlogEntry>> assignMap =
 new HashMap<Integer, List<RetrievedBlogEntry>>();
 for (double assignment : assignments) {
 TextDataItem dataItem = this.blogEntries.get(index++);
 List<RetrievedBlogEntry> entries = assignMap.get(
 (int) assignment);
 if (entries == null) {
 entries = new ArrayList<RetrievedBlogEntry>();
 assignMap.put((int) assignment, entries);
 }

Listing 9.25 The third part of WEKABlogDataSetClusterer

Displays
information
about clusterer

Associates
instances with
each cluster
created

267Leveraging WEKA for clustering
 entries.add((RetrievedBlogEntry) dataItem.getData());

 }
 return assignMap;
 }

 private void printClusterEntries(Map<Integer,
 List<RetrievedBlogEntry>> assignMap) {
 for (int clusterId = 0; clusterId < assignMap.size();
 clusterId++) {
 List<RetrievedBlogEntry> entries = assignMap.get(clusterId);
 System.out.println(clusterId);
 for (RetrievedBlogEntry blogEntry : entries) {
 System.out.println(blogEntry.getExcerpt());
 }
 }
 }

We first create an instance of ClusterEvaluation, associate it with the Clusterer
instance, and then evaluate the clusterer:

 ClusterEvaluation eval = new ClusterEvaluation();
 eval.setClusterer(clusterer);
 eval.evaluateClusterer(instances);

Next, we get the association of each blog entry to a cluster instance:

 double[] assignments = eval.getClusterAssignments();

Next, we use the assignments to create a list of retrieved blog entries with each of the
clusters:

Map<Integer, List<RetrievedBlogEntry>>
 associateInstancesWithClusters(double[] assignments)

Lastly, we print out the assignments using the method printClusterEntries. List-
ing 9.26 shows the results from one of the clustering runs. Note that similar posts are
grouped together in the same cluster. In this instance there are four clusters.

……….
Clustered Instances

0 3 (30%)
1 2 (20%)
2 2 (20%)
3 3 (30%)

Log likelihood: 222.25086

NumClusters=4
0.0
SAP Gets Business Intelligence. What Do You Get? [IMG] Posted by:
Michael Goldberg in News
SAP Gets Business Intelligence. What Do You Get? [IMG] Posted by:
Michael Goldberg in News
Che Guevara, presente! Posted by Arroyoribera on October 7th, 2007 Forty

Listing 9.26 Sample output from one of the clustering runs

Gets
retrieved
blog entry

Prints blog
entry details

268 CHAPTER 9 Discovering patterns with clustering
years ago, the Argentine
1.0
[IMG] That's what Intel wants you to do with the launch of their new
website called CoolSW. They ar
[IMG] That's what Intel wants you to do with the launch of their new
website called CoolSW. They ar
2.0
 We Are Smarter Than Me | Podcasts We are Smarter than Me is a great new
site on collective intelli
Corporate Social Networks Filed under: Collaboration, Social-networking,
collective intelligence, so
Choosing Simplicity and Creative Compassion...and Releasing "Addictions" to
SufferingAn article and
3.0
?[ruby][collective intelligence] "Collective Intelligence"??????ruby???????
 [IMG Programming Collective Intelligence: Building Smart Web 2.0 Applicat
?[ruby][collective intelligence] "Collective Intelligence"?????????????????
? ????? del.icio.us ????

In this section, we’ve looked at applying the WEKA APIs for clustering instances. WEKA
has a rich set of clustering algorithms, including SimpleKMeans, OPTICS (ordering
points to identify clustering structures), EM, and DBScan.

 As you must have noticed from this section, it’s fairly straightforward to apply clus-
tering using the WEKA APIs. Lastly, before we end the chapter, let’s look at key inter-
faces related to clustering in the JDM APIs.

9.3 Clustering using the JDM APIs
The package javax.datamining.clustering contains interfaces for representing a
clustering model, for algorithm settings associated with clustering, and for specifying
the similarity matrix associated with clustering.

 In this section, we briefly look at the key interfaces associated with clustering and
look at code for creating a cluster using the JDM interfaces.

9.3.1 Key JDM clustering-related classes

As shown in figure 9.5, the results from a clustering run are represented by a Clus-
teringModel, which extends the Model interface. A ClusteringModel consists of a
number of Cluster instances, which represent the metadata associated with a cluster.
The Cluster interface has methods to return parent and children cluster instances
(as with hierarchical clustering), statistics about the data associated with the cluster,
rules associated with the cluster, and so on.

Figure 9.5 A
ClusteringModel
consists of a set of
clusters obtained by
analyzing the data.

269Clustering using the JDM APIs
For building a clustering model, there are two types of settings, as shown in figure 9.6.
First are generic settings associated with the clustering process and represented by an
instance of ClusteringSettings. Second are settings that are associated with a specific
clustering algorithm. An example of such a setting is the KMeansSettings interface,
which allows advanced users to specify the details of the k-means clustering algorithm.

 The interface BuildSettings has a method setAlgorithmSettings() for setting
algorithm-specific settings. Let’s walk through some sample code that will make exe-
cuting the clustering process through the JDM APIs clearer.

9.3.2 Clustering settings using the JDM APIs

In this section, we go through sample code to illustrate the clustering process using
the JDM APIs. Our example has four steps:

1 Create the clustering settings object.
2 Create the clustering task.
3 Execute the clustering task.
4 Retrieve the clustering model.

Listing 9.27 shows the code associated with the example and the settings process.

package com.alag.ci.jdm.clustering;

import java.util.Collection;

import javax.datamining.*;
import javax.datamining.algorithm.kmeans.ClusteringDistanceFunction;
import javax.datamining.algorithm.kmeans.KMeansSettings;
import javax.datamining.algorithm.kmeans.KMeansSettingsFactory;
import javax.datamining.clustering.*;
import javax.datamining.resource.Connection;
import javax.datamining.task.*;

public class JDMClusteringExample {

Listing 9.27 Settings-related code for the clustering process

Figure 9.6 Some of the classes associated with clustering algorithm settings and clustering settings

270 CHAPTER 9 Discovering patterns with clustering
 public void cluster(Connection connection) throws JDMException {
 createClusteringSettings(connection);
 createClusteringTask(connection);
 executeClusteringTask(connection);
 retrieveClusteringModel(connection);
 }

 private void createClusteringSettings(Connection connection)
 throws JDMException {
 ClusteringSettingsFactory clusSettingsFactory =
 (ClusteringSettingsFactory)
 connection.getFactory(
 "javax.datamining.clustering.ClusteringSettingsFactory");
 ClusteringSettings clusteringSettings =
 clusSettingsFactory.create();
 clusteringSettings.setMaxNumberOfClusters(100);
 clusteringSettings.setMinClusterCaseCount(10);
 ClusteringAlgorithmSettings algorithmSettings =
 createKMeansClusteringSettings(connection);
 clusteringSettings.setAlgorithmSettings(algorithmSettings);
 connection.saveObject("clusteringSettings",
 clusteringSettings, false);
 }

 private ClusteringAlgorithmSettings createKMeansClusteringSettings(
 Connection connection) throws JDMException {
 KMeansSettingsFactory kmeansSettingsFactory =
 (KMeansSettingsFactory)connection.getFactory(
 "javax.datamining.algorithm.kmeans.KMeansSettingsFactory");
 KMeansSettings kmeansSettings =
 kmeansSettingsFactory.create();
 kmeansSettings.setDistanceFunction(
 ClusteringDistanceFunction.euclidean);
 kmeansSettings.setMaxNumberOfIterations(100);
 kmeansSettings.setMinErrorTolerance(0.001);
 return kmeansSettings;
 }

The example first creates an instance of ClusteringSettings and sets attributes asso-
ciated with the clustering process. For this, it sets the maximum and the minimum
number of clusters to be created:

 clusteringSettings.setMaxNumberOfClusters(100);
 clusteringSettings.setMinClusterCaseCount(10);

Next, an instance of KMeansSettings is created to specify settings specific to the k-
means algorithm. Here, the distance function is set to be Euclidean. The maximum
number of iterations and the minimum error tolerance are also specified:

kmeansSettings.setDistanceFunction(ClusteringDistanceFunction.euclidean);
 kmeansSettings.setMaxNumberOfIterations(100);
 kmeansSettings.setMinErrorTolerance(0.001);

The algorithm settings are set in the ClusteringSettings instance:

 clusteringSettings.setAlgorithmSettings(algorithmSettings);

Next, let’s look at creating the clustering task.

Four steps
associated
with example

Clustering
process-related
settings

Algorithm-specific
settings

271Clustering using the JDM APIs
9.3.3 Creating the clustering task using the JDM APIs

To create an instance of the BuildTask for clustering we use the BuildTaskFactory as
shown in Listing 9.28.

 private void createClusteringTask(Connection connection) throws
JDMException {

 BuildTaskFactory buildTaskFactory = (BuildTaskFactory)
 connection.getFactory("javax.datamining.task.BuildTaskFactory");
 BuildTask buildTask =

buildTaskFactory.create("buildDataPhysicalDataSet",
 "clusteringSettings", "clusteringModel");
 connection.saveObject("clusteringBuildTask", buildTask, false);
 }

The BuildTaskFactory creates an instance of the BuildTask. The create method to
create a BuildTask needs the name of the dataset to be used, the name of the settings
object, and the name of the model that is to be created. In our example, we will use
the dataset “buildDataPhysicalDataSet”, use the setting specified in the object
“clusteringSettings”, and the model that will be created from this run will be
stored using the name “clusteringModel”.

9.3.4 Executing the clustering task using the JDM APIs

To execute a build task, we use the execute() method on the Connection object as
shown in listing 9.29.

 private void executeClusteringTask(Connection connection)
 throws JDMException {
 ExecutionHandle executionHandle = connection.execute(
 "clusteringBuildTask");
 int timeoutInSeconds = 100;
 ExecutionStatus executionStatus =
 executionHandle.waitForCompletion(timeoutInSeconds);
 executionStatus = executionHandle.getLatestStatus();
 if (ExecutionState.success.equals(executionStatus.getState())) {
 //successful state
 }
 }

The following code:

 ExecutionStatus executionStatus =
 executionHandle.waitForCompletion(timeoutInSeconds);

waits for the clustering task to complete and specifies a timeout of 100 seconds.
Once the task completes, it looks at execution status to see whether the task was
successful.

 Next, let’s look at how we can retrieve the clustering model that has been created.

Listing 9.28 Creating the clustering task

Listing 9.29 Executing the clustering task

272 CHAPTER 9 Discovering patterns with clustering
9.3.5 Retrieving the clustering model using the JDM APIs

Listing 9.30 shows the code associated with retrieving a ClusteringModel using the
name of the model and a Connection instance.

 private void retrieveClusteringModel(Connection connection)
 throws JDMException {
 ClusteringModel clusteringModel = (ClusteringModel)
 connection.retrieveObject("clusteringModel",
 NamedObject.model);
 Collection<Cluster> clusters = clusteringModel.getClusters();
 for (Cluster cluster: clusters) {
 System.out.println(cluster.getClusterId() + " " +
 cluster.getName());
 }
 }
}

Once a ClusteringModel is retrieved, we can get the set of Cluster instances and dis-
play information related to each of the clusters.

 In this section, we’ve looked at the key interfaces associated with clustering and the
JDM APIs. As you must have noticed from this chapter, using the JDM APIs to apply
clustering is fairly straightforward. We’ve looked at some sample code associated with
creating clustering settings, creating and executing a clustering task, and retrieving
the clustering model.

9.4 Summary
Clustering is the automated process of analyzing data to discover groups of related
items. Clustering the data can provide insight into the distribution of the data, and
can then be used to connect items with other similar items, build predictive models,
or build a recommendation engine.

 Clustering text documents involves creating a term vector representation for the
text. This representation typically yields a high dimension and is sparsely populated.
Analyzing the clickstream for a set of users has a similar representation. Creating a
dataset using the attributes of a set of items typically leads to a dense, low-dimension
representation for the data.

 K-means is perhaps the simplest clustering algorithm. For this algorithm, we spec-
ify the number of clusters for the data. The algorithm iteratively assigns each item to a
cluster based on a similarity or a distance measure. The centers of the clusters are
recomputed based on the instances assigned to them. In hierarchical clustering, the
algorithm begins with assigning a cluster to each item. Next, a new cluster is created
by combining two clusters that are most similar. This process continues until you’re
left with only one cluster. The expectation maximization (EM) algorithm uses a proba-
bilistic approach to cluster instances. Each item is associated with different clusters
using a probabilistic distribution.

Listing 9.30 Retrieving the clustering model

273Resources
 The WEKA package has a number of algorithms that can be used for clustering.
The process of clustering consists of first creating an instance of Instances to repre-
sent the dataset, followed by an instance of a Clusterer, and using a ClusterEvalua-
tion to evaluate the results.

 The process of clustering using the JDM APIs involves creating a ClusterSettings
instance, creating and executing a ClusteringTask, and retrieving the Clustering-
Model that’s created.

 Now that we have a good understanding of clustering, in the next chapter we’ll
look at building predictive models.

9.5 Resources
 Beil, Florian, Martin Ester, and Xiaowei Xu. “Frequent term-based text clustering.” Proceedings

of the Eighth ACM SIGKDD international Conference on Knowledge Discovery and Data
Mining. (Edmonton, Alberta, Canada, 2002). KDD ‘02. ACM, New York, NY. 436–442.
DOI= http://doi.acm.org/10.1145/775047.775110

 Böhm, Christian, Christos Faloutsos, Jia-Yu Pan, and Claudia Plant. “Robust information-
theoretic clustering.” Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (Philadelphia, PA, 2006). KDD ‘06. ACM, New
York, NY. 65–75. DOI= http://doi.acm.org/10.1145/1150402.1150414

 “Tutorial: Clustering Large and High-Dimensional Data.” CIKM 2005. http://
www.csee.umbc.edu/~nicholas/clustering/

http://doi.acm.org/10.1145/775047.775110
http://doi.acm.org/10.1145/1150402.1150414
http://www.csee.umbc.edu/~nicholas/clustering/
http://www.csee.umbc.edu/~nicholas/clustering/

Making predictions
In this chapter, we build predictive models. A predictive model makes a prediction for
the value of an output attribute using the values associated with other input attri-
butes. Predictive models can be categorized into two types based on whether the
predicted attribute is continuous or discrete. When the predicted attribute is dis-
crete, the problem is one of classification, whereas when the attribute is continuous,
the problem is one of regression. Some predictive models, as in the case of neural
networks, can be built to predict multiple output attributes, while others predict a
single attribute.

 There are two steps involved with using predictive models: the learning phase
and the application phase. In the learning phase, given a dataset of examples where
each example has a set of input and output attributes, the learning process tries to
build a mathematical model that predicts the output attribute value based on the
input values. Once a mathematical model has been built, the second step is to

This chapter covers
■ Classification fundamentals using decision trees, Naïve

Bayes, and belief networks
■ Building predictors using regression and neural networks
■ Leveraging the WEKA APIs for making predictions
■ Classification and regression using JDM APIs
274

275Classification fundamentals
apply the model to make predictions. The application of the mathematical model for
predictions is typically fast, and can be used for real-time predictions in an applica-
tion, while the amount of time taken to build the predictive model is much greater
and is typically done asynchronously in the application.

 In this chapter, we review some of the key supervised learning algorithms used for
both classification and regression. We build on the example from the previous chap-
ter of clustering blog entries. We use a simple example to illustrate the inner workings
of the algorithms. We also demonstrate how to build classifiers and predictors by
using the WEKA APIs. For this, we apply the APIs to live blog entries retrieved from
Technorati. Three commonly used classification algorithms are covered in this chap-
ter: decision trees, Naïve Bayes, and Bayesian networks (also known as belief networks
or probabilistic networks). The key regression algorithms covered in this chapter
include linear regression, multi-layer perceptron, and radial basis functions. We also
briefly review the JDM APIs related to classification and regression. At the end of this
chapter, you should have a good understanding of the key classification and regres-
sion algorithms, how they can be implemented using the WEKA APIs, and the related
key JDM concepts.

10.1 Classification fundamentals
In most applications, content is typically categorized into segments or categories. For
example, data mining–related content could be categorized into clustering, classifica-
tion, regression, attribute importance, and association rules. It’s quite useful, espe-
cially for user-generated content, to build a classifier that can classify content into the
various categories. For example, you may want to automatically classify blog entries
generated by users into one of the appropriate categories for the application.

 One common example of a classification problem is email filtering. Here, the clas-
sifier predicts whether a given email is spam. The classifier may use a variety of infor-
mation to make the prediction, such as the name of the sender, the number of
individuals the email has been sent to, the content of the email, the prior history of
the user interacting with similar emails, the size of the email, and so forth. The pro-
cess of classifying emails is fairly involved and complex. and there are a number of
commercial products that do this task. Therefore, we use a simpler example later in
this section to illustrate the classification process.

 In this section, we review three of the most commonly used classifiers: decision
trees, Naïve Bayes, and belief networks. In Section 10.2, we use WEKA APIs to apply
these classifiers to the problem of classifying blog entries.

10.1.1 Learning decision trees by example

Decision trees are one of the simplest and most intuitive classifiers used in the indus-
try. The model generated from a decision tree can be converted to a number of if-
then rules, and the relationships between the output attributes and input attributes
are explicit. In section 7.1.3, we briefly described a decision tree. In this section, we
work through an example to better understand the concepts related to building one.

276 CHAPTER 10 Making predictions
 In our example, we have a number of advertisements that we can potentially show
to a user. We want to show the advertisement that the user is most likely to click (and
then buy the advertised item). One such advertisement is for an expensive Rolex
watch. In our example, we want to build a predictive model that will guide us as to
whether we should show this Rolex advertisement to a user. Remember, we want to
optimize the likelihood of the user actually buying the item as opposed to simply click-
ing on the ad to browse the content. In essence, we want to optimize the look-to-book
ratio for our product—the proportion of users who’ve looked at an item and who then
bought the item.

 Based on some past analysis of the kind of people who tend to buy this watch,
we’ve identified three attributes—in the real world, you’ll probably have many more:

■ Is this a high-net-worth individual? — Our user has provided the ZIP code of his
home address during the registration process. We’ve correlated this ZIP code
with average home values in that area and have converted this into a Boolean
attribute {true, false} indicating whether this individual has a high net worth.

■ Is the user interested in watches? —This again is a Boolean attribute. It assumes a value
of {true, false}. A user is deemed to be interested in watches if recently (in the cur-
rent interaction session) the user has either searched for content on the site that
has a keyword watch or rolex or has visited content related to these keywords.

■ Has the user bought items before? —This again takes a Boolean value {true, false}
based on whether the user has transacted before on the site.

Some of the other attributes you can use to build such a predictive model are the
user’s gender, the age, the referring page, and so on.

 We’ve collected the data of users who clicked on the ad for the watch and whether
they actually bought the item. Table 10.1 contains some sample data that we use in our
analysis. Note that User 3 and User 4 have the same input attributes but different out-
comes. You may want to look at the data to see if you can find any patterns that you
can use for predicting whether the user is likely to buy the watch.

 Remember that a decision tree consists of nodes and links. Each node has an asso-
ciated attribute. The number of links originating from the node equals the number of
discrete values that the attribute can take. In our case, all the attributes are binary and
take a value of {true, false}. Based on the given data, we need to determine the best
attribute that we can use to create the decision tree.

High net
worth

Interested
in watches

Has purchased
before

Purchased
item

User 1 F T T F

User 2 T F T F

User 3 T T F T

User 4 T T F F

User 5 T T T T
Table 10.1 Raw data
used in the example

277Classification fundamentals
Intuitively, we want to select the attribute that can best predict the output. A commonly
used measurement for this is information entropy—this measures the amount of chaos
associated with the distribution of values. The lower the entropy, the more uniform the
distribution. To see how entropy is calculated, let’s look at the first attribute: high net
worth. Splitting the dataset based on the values of this attributes leads to two sets:

■ False with output case {F}
■ True with output cases {F, T, F, T}

Given a set of p positive cases and n negative cases, we can compute the gain1 associ-
ated with the distribution using the code shown in listing 10.1.

 public double gain(double p, double n) {
 double sum = p+n;
 double gain = p*log2(p/sum)/sum + n*log2(n/sum)/sum;;
 return -gain;
 }

 private double log2(double x) {
 if (x <= 0.) {
 return 0.;
 }
 return Math.log10(x)/Math.log10(2.);
 }

Note that a perfect attribute will be one that splits the cases into either all positives or
all negatives—in essence, Gain(1,0) = 0. On the other hand, an attribute that splits the
space into two equal segments will have the following information gain: Gain(1,1) = 1.

 Let’s calculate the gain associated with the initial set of data, which consist of three
negative cases and two positive cases:

 Gain(2, 3) = (2/5)*log2 (2/5) + (3/5) * log2 (3/5)
 = 0.97

Now, one can compute the entropy associated with splitting on the first attribute,
which creates two sets {F} and {F, T, F, T} by the following process:

 Gain(0,1) = 0 + (1) * log2 (1)
 = 0

 Gain(2,2) = (2/4) log2 (2/4) + (2/4) log2(2/4)
 = 1

Both these gains are added in the ratio of the number of samples that appear:

 Net Gain (attribute = high net worth) = (1/5) * 0 + (4/5) *1
 = 0.8

The overall information gain associated with splitting the data using the first attribute is

1 Please refer to the references at the end of the chapter for more details on the computation of information
entropy and how it came about.

Listing 10.1 Computing the gain associated with a distribution

278 CHAPTER 10 Making predictions
 Net Info Gain(attribute = high net worth) = Gain(before split) – Gain (after split)
 = 0.97 - 0.8

 = 0.17

Similarly, the second attribute, interested in watches, splits the dataset into two sets,
which happen to be the same as with the first attribute:

■ False with output case {F}
■ True with output cases {F, T, F, T}

Therefore, Info Gain(interested in watches) = 0.17
 Lastly, the third attribute, has purchased before, splits the dataset into the following

two sets:

■ False with values {T, F}
■ True with values {F, F, T}

Net Info Gain (attribute = has purchased before} = -0.97 – { (2/5) Gain(1,1) + 3/5 Gain(1,2)}
 = 0.02

Selecting either the first or the second attribute leads to the highest net information
gain. We arbitrarily select the first attribute to break this tie. Figure 10.1 shows the first
node we’ve created for our decision tree, along with the set of cases that are available
for the node.

 Next, let’s consider the case when the individual doesn’t have a high net worth.
Table 10.2 contains the one case that’s applicable for this node.

Note that because there’s just one case, all cases have the same predicted value. The
information gain even without further splitting is Info Gain(0,1) = 0.

Interested
in watches

Has purchased
items

Purchased

User 1 T T F

Attribute = Is high net
worth individual?

False True

High net worth Interested in Has purchased Purchased item

User 1 F T T F
User 2 T F T F
User 3 T T F T
User 4 T T F F
User 5 T T T T

Interested in
watches?

Has purchased before Purchased
item

User 1 T T F

Interested in
watches?

Has purchased
before

Purchased item

User 2 F T F
User 3 T F T
User 4 T F F
User 5 T T T

Figure 10.1 The first node in our decision tree

Table 10.2 Data available when the
user isn’t a high-net-worth individual

279Classification fundamentals
There’s nothing to be gained by further splitting any of the other attributes when the
user isn’t a high-net-worth individual. We can safely predict that the user won’t buy the
Rolex watch.

 Next, let’s consider the case when the user has a high net worth. Table 10.3 shows
the data associated with high-net-worth individuals.

There are two positive cases and two negative cases. The information gain associated
with not splitting this node further is Info Gain(2, 2) = 1.

 Next, for this dataset, let’s compute the information gain associated with the two
remaining attributes: is the user interested in watches, and has the user purchased
items before?

 Using the attribute interested in watches, we can split the dataset into the following
two sets:

■ True leads to {True, False, True}
■ False leads to {False}

Net Info Gain = 1 – { (3/4) gain(2,1) + (1/4) gain(1,1)}
 = 1 – 0.69
 = 0.31

Similarly, splitting the data using the attribute has purchased before, leads to the follow-
ing two datasets:

■ True leads to {False, True}
■ False leads to {True, False}

Net Info Gain = 1 – { (1/2) gain(1,1) + (1/2) gain (1,1) }
 = 0

Note that splitting on interested in watches has the maximum net information gain, and
this is greater than zero. Therefore, we split the node using this attribute. Figure 10.2
shows the decision tree and the available data using this attribute for splitting.

 Next, let’s consider the case when the user has a high net worth but isn’t interested
in watches. Table 10.4 contains the data associated with this case.

Interested in
watches

Has purchased
items

Purchased

User 2 F T F

User 3 T F T

User 4 T F F

User 5 T T T

Has purchased
items

Purchased

User 2 T F

Table 10.3 Data available when the
user is a high-net-worth individual

Table 10.4 Data when user
has high-net-worth individual but
is not interested in watches

280 CHAPTER 10 Making predictions
Again, there’s only one case, so this falls into the category where all the output cases
have the same prediction. Therefore, we can predict that the user won’t buy the Rolex
watch for this node.

 Next, let’s consider the case that the user has a high net worth and is interested in
watches. Table 10.5 shows the set of data available for this node.

First, the information gain by not splitting is Info Gain(2,1) = 0.92.
 Splitting on the last attribute, has purchased before, leads to the following two datasets:

■ False with cases {True, False}
■ True with case {True}

Net Info Gain(attribute = has purchased items before) = 0.92 – {(2/3) gain (1,1) + (1/3) gain(1,0)}
 = 0.59.

It’s worthwhile to split on this attribute. Remember, we don’t want to over-fit the data.
The net information gain associated with splitting on an attribute should be greater
than zero.

 Figure 10.3 shows the final decision tree. Note that each leaf node can be con-
verted into rules. We can derive the following four rules from the tree by following the
paths to the leaf nodes:

1 If the user doesn’t have a high net worth then she won’t buy the watch.
2 If the user has a high net worth but isn’t interested in watches then she won’t

buy the watch.

Has purchased
items

Purchased

User 3 F T

User 4 F F

User 5 T T

Attribute = Is high net
worth individual?

False True

False Attribute = Is the user
interested in watches?

False True

Has purchased
before

Purchased item

User 2 T F

Has purchased
before

Purchased item

User 3 F T
User 4 F F
User 5 T TFigure 10.2 The second split in our decision tree

Table 10.5 Data when user
has high-net-worth individual
and is interested in watches

281Classification fundamentals
3 If the user has a high net worth and is interested in watches, and has bought
items before, then she will buy the watch.

4 If the user has a high net worth and is interested in watches, but hasn’t bought
items before, then the user might or might not buy the watch, with equal
probability.

With these four rules, we can decide whether it’s worthwhile to show the Rolex adver-
tisement for a user who’s visiting our site. Our click-through rates for this ad should be
higher than if we decide randomly whether to show the Rolex ad.

 The example we’ve just worked through uses attributes with binary values. The
same ideas are generalized for attributes with more than two discrete values. CART,
ID3, C4.5, and C5.0 are some of the common implementations of decision trees. In sec-
tion 10.2, we use the WEKA libraries to learn decision trees. Next, we use probability
theory to build our next classifier, called Naïve Bayes’ classifier.

10.1.2 Naïve Bayes’ classifier

Before we look at the implementation of the Naïve Bayes’ algorithm, we need to under-
stand a few basic concepts related to probability theory. First, the probability of a certain
event happening is a number between zero and one. The higher the number, the
greater the chances of that event occurring. One of the easiest ways to compute an
event’s probability is to take its frequency count. For example, for the data in table 10.1,
in two cases out of five, the individuals bough the watch. Therefore, the probability of
a user buying the watch is 2/5 = 0.4.

 Next, let’s calculate some probabilities using the data available in table 10.1. We
assume that each attribute associated with the user has an underlying probability dis-
tribution. By taking the frequency count we have the probabilities shown in table 10.6.

Attribute = Is high net
worth individual?

False True

False
Attribute = Is the user
interested in watches?

False True

False Attribute = has the
user

bought items before?

TrueTrue/False

False True

Figure 10.3 The final decision tree
for our example

282 CHAPTER 10 Making predictions
Now, let’s find the probability that a user is both a high-net-worth individual and is
interested in watches. The last three rows in table 10.1 are of interest to us. Hence,
this probability is 3/5 = 0.6.

 What if we wanted to find out the probability that a user is either a high-net-worth
individual or is interested in watches (or both)? Again, looking at the data in table 10.1,
we’re interested in all the rows that have True in either the first or second column. In
this case, all five rows are of interest to us, and the associated probability is 5/5 = 1.0.

 But we could have computed the same information by adding the probability of a
user being a high-net-worth individual (0.8) and the probability of the user being
interested in watches (0.8) and subtracting the probability of both these attributes
being present together (0.6):

 = 0.8 + 0.8 – 0.6 = 1.0

More formally, the probability associated with either of the two variables occurring is
the sum of their individual probabilities, subtracting the probability of both variables
occurring:

 Pr{A or B } = Pr{A} + Pr{B} – Pr{A and B}

Next, let’s say that we want to compute the probability of A and B occurring. This can
happen in one of two ways:

■ Variable A occurs and then variable B occurs.
■ Variable B occurs and then variable A occurs.

We use the notation Pr{B | A} to refer to the probability of B occurring, given that A
has already occurred. Thus, the probability of A and B occurring can be computed as

 Pr{A and B} = Pr{A}Pr{B|A}
 = Pr{B} Pr{A|B}

This formula is also known as Bayes’ Rule and is widely used in probability-based algo-
rithms. Again, it’s helpful to work through some concrete numbers to better under-
stand the formulas.

 Following this formula:

 Pr{high net worth and interested in watches}
 = Pr{high net worth} Pr{interested in watches | high net worth}
 = Pr{interested in watches} Pr {high net worth | interested in watches}

To compute the conditional probability Pr {interested in watches | high net worth}, we
need to look at the bottom four rows that have True in the first column. When the
individual has high net worth, in three cases out of four, the user is interested in

Value=True Value=False

High net worth 4/5 = 0.8 1/5 =0.2

Interested in watches 4/5 = 0.8 1/5 = 0.2

Has purchased before 3/5 = 0.6 2/5 = 0.4 Table 10.6 Computing the probabilities

283Classification fundamentals
watches. Hence, the conditional probability is 3/4 = 0.75. Similarly, the conditional
probability of the user having a high net worth given that the user is interested in
watches is three out of four: 3/4 = 0.75.

 Substituting the values, we get

 Pr{high net worth and interested in watches}
 = 0.8 * 0.75
 = 0.8 * 0.75
 = 0.6

With this basic overview of probability theory, we’re now ready to apply it to the prob-
lem of classification. Our aim is to calculate the probability of a user buying a watch,
given the values for the other three attributes. We need to shorten the description for
the attributes. For the sake of brevity, let’s call the three attributes A, B, and C, and the
predicted attribute P, as shown in table 10.7.

Let’s assume that a user who has a high net worth, is interested in watches, and has
purchased items before is visiting the site. We want to predict the probability that the
user will buy the item:

 Pr {P=T | A=T,B=T,C=T} = Pr {A=T,B=T, C= T | P = T} Pr{T}/ Pr {A=T,B=T, C= T }
 Pr {P=F | A=T,B=T,C=T} = Pr {A=T,B=T, C= T | P = F} Pr{F}/ Pr {A=T,B=T, C= T }

Computing Pr {A=T,B=T, C= T | P = T} is typically not that easy, especially with a large
number of attributes and when the learning data is sparse.2 To simplify matters, we
assume that all three attributes are conditionally independent of each other, given the out-
put attribute. Therefore, to compute Pr {A=T,B=T, C= T | P = T}, let’s first split the exam-
ples into two sets based on the value of the output variable, as shown in figure 10.4.

 Using the cases where the output attribute is True, we can calculate the following
conditional probabilities:

Similarly, using the cases where the output attribute if False, we can calculate the fol-
lowing conditional probabilities:

Description

A Is the user a high-net-worth individual?

B Is the user interested in watches?

C Has the user bought items before?

P Will the user buy the watch?

2 For example, note that there is no data in our dataset to compute Pr {A=F,B=T, C= T | P = T}.

■ Pr {A = T | P = T} = 1 ■ Pr {A = F | P = T} = 0
■ Pr {B = T | P = T} = 1 ■ Pr {B = F | P = T} = 0
■ Pr {C = T | P = T} = 1/2 ■ Pr {C = F | P = T} = 1/2

■ Pr {A = T | P = F} = 2/3 ■ Pr {A = F | P = F} = 1/3
■ Pr {B = T | P = F} = 2/3 ■ Pr {B = F | P = F} = 1/3
■ Pr {C = T | P = F} = 2/3 ■ Pr {C = F | P = F} = 1/3

Table 10.7 Shortening
the attribute descriptions

284 CHAPTER 10 Making predictions
Also, the prior probabilities are as follows:

 Pr {P = T} = 0.4 and Pr {P = F} = 0.6

Hence, we can calculate Pr {A=T, B=T, C= T | P = T}:

 Pr {A=T,B=T, C= T | P = T} = Pr {A=T | P = T} Pr {B=T | P = T} Pr {C=T | P = T}
 = 1 * 1 * (1/2) = (1/2)

Here, we’ve simply expanded the formula and substituted the known values. Similarly:

 Pr {A=T,B=T, C= T | P = F} = Pr {A=T | P = F} Pr {B=T | P=F} Pr{C=T | P=F}
 = (2/3) * (2/3) * (2/3) = 8/27

The likelihood of a user buying the watch can be computed as follows:

 Pr {P=T | A=T,B=T,C=T}/ Pr {P=F | A=T,B=T,C=T}
 = Pr {A=T,B=T, C= T | P = T} Pr{T}/ Pr {A=T,B=T, C= T | P = F} Pr{F}
 =(1/2)*(2/5)/ {(8/27)* (3/5))
 = 27/24
 = 9/8

This implies that the user is more likely to buy the watch when all three conditions are
met. This prediction is the same as one of the nodes that was derived by the decision tree.

 When the conditional independence assumption is used, the algorithm is known
as Naïve Bayes.

 The probability-based approach can handle missing variables. For example, let’s
say that we don’t know whether the individual has a high net worth. In this case, we
can calculate the likelihood of the user buying the watch as

 Pr {P=T | B=T,C=T}/ Pr {P=F | B=T,C=T}
 = Pr {B=T, C= T | P = T} Pr{T}/ Pr { B=T, C= T | P = F} Pr{F}
 = (1/2)*(2/5)/ {(1/3)*(3/5)}
 = 0.5

False

True

High net worth Interested in
watches?

Has purchased
before

Purchased item

User 1 F T T F
User 2 T F T F
User 3 T T F T
User 4 T T F F
User 5 T T T T

High net worth Interested in
watches?

Has purchased
before

Purchased item

User 3 T T F T
User 5 T T T T

High net worth Interested in
watches?

Has purchased
before

Purchased item

User 1 F T T F
User 2 T F T F
User 4 T T F F

Figure 10.4 Splitting the dataset based on the value of the output attributes to compute the
conditional probabilities

285Classification fundamentals
In this case, a user is more likely to not buy the watch—a value of 1 would imply an
equal chance between buying and not buying. Given that we only have three binary
inputs and there are only (23 = 8) cases, we can summarize the probabilities and make
a prediction for each case. This is shown in table 10.8.

Note that the sum of the probabilities for predicted value being true is = (1/5 + 1/5)
= 0.4, and the probability for the predicted value being false is 27/45 = 0.6, which is equal
to the a priori probability—the probability of the two events occurring in the absence of
any evidence. Also, in the second row in table 10.8—when the user has a high net worth
and is interested in watches but hasn’t bought items before (A = T & B = T & C = F)—the
Naïve Bayes’ analysis predicts that the user is more likely to buy the watch, with a like-
lihood of 9/4. You may recall that in the previous section, using the decision tree, the
prediction had an equal likelihood of the user buying the watch.

 Even though the Naïve Bayes’ process is simple, it’s known to give results as good
as, if not better than, some of the other, more complicated classifiers. The probability-
based approach can be generalized and represented using a graph. The resulting net-
work is commonly known as a Bayesian belief network, also called probabilistic reasoning,
which we look at next.

10.1.3 Belief networks

Belief networks are a graphical representation for the Naïve Bayes’ analysis that we
did in the previous section. More formally, a belief network is a directed acyclic graph
(DAG) where nodes represent random variables, and links between the nodes corre-
spond to conditional dependence between child and parent nodes. Each variable may
be discrete, in which case it assumes an arbitrary number of mutually exclusive and
collectively exhaustive values, or it may be continuous. The absence of an arrow
between two nodes represents conditional independence between the variables. The
network is directed—there’s a direction associated with the nodes—and acyclic—there

Table 10.8 The prediction table for our example

High
net worth

Interested
in watches

Has
purchased

Will buy =
True

Will buy =
False

Prediction

T T T 1/5 8/45 Buy

T T F 1/5 4/45 Buy

T F T 0 4/45 Not Buy

T F F 0 2/45 Not Buy

F T F 0 4/45 Not Buy

F T F 0 2/45 Not Buy

F F T 0 2/45 Not Buy

F F F 0 1/45 Not Buy

286 CHAPTER 10 Making predictions
are no cycles between the connections. Each node has a conditional probability table
that quantifies the effects that the parents have on the node. The parents of a node
are all those nodes that have arrows pointing to them. For our example, belief net-
works are best illustrated using a graphical representation.

 Figure 10.5 shows the belief network for our example. Note the following:

■ The arrow from P, the predicted attribute, to the three children nodes A, B, and
C implies that when P occurs, it has an effect on each of its children. There’s a
causal or cause-effect relationship between the parent and the child node.

■ Associated with each variable is a conditional probability table. The node P has
no parents and the associated probabilities with the node are known as a priori
probabilities.

■ Given the parent, P, the three children nodes A, B, and C are assumed to be
conditionally independent of each other.

In the absence of any additional information
about the values for A, B, and C, the network pre-
dicts the probability of Pr {P = T} = 0.4. Let’s say that
we know that the person has a high net worth: A =
T. With this new evidence, what’s the new proba-
bility associated with P? Figure 10.6 shows the
belief network associated with this case. There are
just two nodes in the network.

 From this, we can compute the following:

 Pr {P = T | A = T} = Pr {A = T| P = T} Pr {P = T}/Pr {A = T}
 = 1 * (0.4) / 1. = 0.4

This is the same as when we didn’t know whether A was True. However, if we knew that
A = False, we can compute the following:

 Pr {P = T | A = F} = Pr {A = F| P = T} Pr {P = T}/Pr {A = F}
 = 0 * (0.4) / 1. = 0

Doing the inference in the network to take into account new evidence amounts to apply-
ing the Bayes’ Rule, and there are well-known algorithms for doing this computation.

P

A B C

Figure 10.5 Belief network
representation for our example

P

A

Figure 10.6 The simplified belief
network when only A is known

287Classifying blog entries using WEKA APIs
Belief networks can be singly or multiply connected. An acyclic graph is singly connected
if there’s at most one chain (or undirected path) between a pair of variables. Networks
with undirected cycles are multiply connected.

 There are a number of inference algorithms for a simply-connected network.
There are three basic algorithms for evaluating multiply connected networks: cluster-
ing methods, conditioning methods, and stochastic simulation. There are also well-
known algorithms for constructing belief networks using test data. Expert-developed
belief networks have been used extensively in building knowledge-based systems.

 At this point, it’s helpful to review the Bayesian interpretation of probability. One
prevalent notion of probability is that it’s a measure of the frequency with which an
event occurs. A different notion of probability is the degree of belief held by a person
that the event will occur. This interpretation of probability is called subjective or Bayes-
ian interpretation.

 We’re done with our Rolex advertisement example. In the next section, we use a new
example, classifying blog entries, to illustrate the use of WEKA APIs for classification.

10.2 Classifying blog entries using WEKA APIs
In this section, we build on our example of clustering blog entries from the previous
chapter. We demonstrate the process of classification by retrieving blog entries from
Technorati on a variety of topics. We categorize the blog entries into two sets—one of
interest to us and the other not of interest to us. In this section, we apply a variety of
classifiers, using the WEKA APIs to classify the items into the two categories. Later in
the chapter, when we deal with regression, we use the same example to build predic-
tors, after converting the attributes into continuous attributes. At the end of this sec-
tion, you should be familiar with the classification process and the use of WEKA APIs to
apply one of many classification algorithms.

 Figure 10.7 outlines the four classes that we use in this chapter. You may recall that
BlogDataSetCreatorImpl, which we developed in section 9.1.2, is used to retrieve blog
entries from Technorati. WEKAPredictiveBlogDataSetCreatorImpl extends this class
and creates the dataset that’s used for classification and regression. WEKABlogClassi-
fier is a wrapper class to WEKA, which invokes the WEKA APIs to classify blog entries
using the dataset created by WEKAPredictiveBlogDataSetCreatorImpl. In section 10.5,

Figure 10.7 The classes that we
develop in this chapter

288 CHAPTER 10 Making predictions
we extend WEKABlogClassifier to create WEKABlogPredictor, which is used for invok-
ing WEKA regression APIs.

 Next, let’s look at the implementation for the first of our classes, WEKAPredictive-
BlogDataSetCreatorImpl.

10.2.1 Building the dataset for classifying blog entries

Classification algorithms typically deal with nominal or discrete attributes, while regres-
sion algorithms normally deal with continuous attributes. We build predictive models
to predict whether a blog entry is of interest. To create the dataset for learning, we do
the following:

1 Retrieve blog entries from Technorati for a set of tags. Blog entries associated
with each tag are marked to be either an item of interest or an item in which we
aren’t interested.

2 Similar to our approach in chapter 9, we parse through the retrieved blog entry
to create a term vector representation for each of the blog entries. Each term
vector is associated with the predicted value of whether this entry is of interest.

3 Each term vector gets converted into the WEKA Instance object. A collection of
these Instance objects forms the dataset and is represented by the Instances
object.

4 For nominal attributes, we convert each of the tags into a Boolean attribute,
which takes a value of true if the tag appears in the blog entry and a value of
false if it’s absent. Of course, you can use more sophisticated techniques to dis-
cretize the term vector into categorical attributes.

Listing 10.2 shows the first part of the code for WEKAPredictiveBlogDataSetCreator-
Impl, which deals with creating the dataset with positive and negative test cases.

package com.alag.ci.blog.dataset.impl;

import java.io.IOException;
import java.util.*;

import weka.core.*;

import com.alag.ci.blog.search.BlogQueryResult;
import com.alag.ci.cluster.TextDataItem;
import com.alag.ci.textanalysis.*;
import com.alag.ci.textanalysis.Tag;

public class WEKAPredictiveBlogDataSetCreatorImpl extends
 BlogDataSetCreatorImpl {
 private List<TextDataItem> blogEntries = null;

 public WEKAPredictiveBlogDataSetCreatorImpl() throws Exception {
 }

 private List<TextDataItem> createLearningDataSet(boolean isContinuous)
 throws Exception {
 String [] positiveTags = { "collective intelligence",

Listing 10.2 Retrieving blogs

289Classifying blog entries using WEKA APIs
 "data mining", "web 2.0"};
 String [] negativeTags = { "child intelligence", "AJAX"};
 return createLearningDataSet(positiveTags, negativeTags,
 isContinuous);
 }

 private List<TextDataItem> createLearningDataSet(
 String [] positiveTags, String [] negativeTags,
 boolean isContinuous) throws Exception {
 List<TextDataItem> data = new ArrayList<TextDataItem>();
 for (String tag: positiveTags) {
 data.addAll(getBlogData(tag, true));
 }
 for (String tag: negativeTags) {
 data.addAll(getBlogData(tag, false));
 }
 return data;
 }

 private List<TextDataItem> getBlogData(String tag, boolean isRelevant)
 throws Exception {
 BlogQueryResult bqrCI = getBlogsFromTechnorati(tag);
 return getBlogTagMagnitudeVectors(bqrCI,isRelevant);
 }

 protected List<TextDataItem> getBlogTagMagnitudeVectors(
 BlogQueryResult blogQueryResult, boolean isRelevant)
 throws IOException {
 List<TextDataItem> tdiList =
 super.getBlogTagMagnitudeVectors(blogQueryResult);
 for (TextDataItem dataItem: tdiList) {
 dataItem.setCiRelated(isRelevant);
 }
 return tdiList;
 }

To create the dataset, we specify a set of positive and negative test cases. For example,
in the code

 String [] positiveTags = { "collective intelligence",
 "data mining", "web 2.0"};
 String [] negativeTags = { "child intelligence", "AJAX"};

we retrieve blog entries from Technorati using the following tags for the positive
cases—collective intelligence, data mining, and web 2.0—and the following tags for the
negative cases—child intelligence and AJAX.

 The method getBlogData() uses the specified tag to retrieve relevant blog entries
from Technorati, and predicts whether they’ll be relevant. Of course, we’re really
interested in getting a WEKA dataset representation—an instance of Instances using
the retrieved blog entries. For this, we need to look at listing 10.3.

 protected List<TextDataItem> getBlogTagMagnitudeVectors(
 BlogQueryResult blogQueryResult, boolean isRelevant,
 boolean isContinuous) throws IOException {

Listing 10.3 Creating the dataset

Creating positive
and negative test
cases

Retrieving data
from Technorati

290 CHAPTER 10 Making predictions
 List<TextDataItem> tdiList =
 super.getBlogTagMagnitudeVectors(blogQueryResult);
 for (TextDataItem dataItem: tdiList) {
 dataItem.setCiRelated(isRelevant);
 }
 return tdiList;
 }

 public Instances createLearningDataSet(String datasetName,
 boolean isContinuous) throws Exception {
 this.blogEntries = createLearningDataSet(isContinuous);
 FastVector allAttributes = createAttributes(isContinuous);
 Instances trainingDataSet = new Instances(datasetName,
 allAttributes, blogEntries.size());
 int numAttributes = allAttributes.size();
 Collection<Tag> allTags = this.getAllTags();
 for (TextDataItem dataItem : blogEntries) {
 Instance instance = createNewInstance(numAttributes,
 trainingDataSet,
 allTags, dataItem, isContinuous);
 trainingDataSet.add(instance);
 }
 return trainingDataSet;
 }

 protected FastVector createAttributes(boolean isContinuous) {
 Collection<Tag> allTags = this.getAllTags();
 FastVector allAttributes = new FastVector(allTags.size());
 for (Tag tag : allTags) {
 Attribute tagAttribute =

createAttribute(tag.getDisplayText(),isContinuous);
 allAttributes.addElement(tagAttribute);
 }
 Attribute classificationAttribute =

createAttribute("ClassificationAttribute",isContinuous);
 allAttributes.addElement(classificationAttribute);
 return allAttributes;
 }

There’s only one public method in the class WEKAPredictiveBlogDataSetCreator-
Impl: createLearningDataSet(). This method takes in a name for the dataset and
whether we want continuous or discrete attributes. It first retrieves all the blog entries
from Technorati, creates an attribute representation, and creates the dataset by con-
verting each blog entry into an Instance object.

 The method createAttributes() creates an Attribute representation for each
tag by invoking the similarly named createAttribute() method. Details of create-
Attribute() are shown in listing 10.4.

private Attribute createAttribute(String attributeName,
 boolean isContinuous) {
 if (isContinuous) {
 return createContinuousAttribute(attributeName);

Listing 10.4 Creating Instance in WEKAPredictiveBlogDataSetCreatorImpl

Creating
WEKA
dataset for
learning

Creating
Attribute

representation

291Classifying blog entries using WEKA APIs
 }
 return createBinaryNominalAttribute(attributeName);
 }
 private Attribute createBinaryNominalAttribute(
 String attributeName) {
 FastVector attNominalValues = new FastVector(2);
 attNominalValues.addElement("true");
 attNominalValues.addElement("false");
 return new Attribute(attributeName,attNominalValues);
 }

 private Attribute createContinuousAttribute(
 String attributeName) {
 return new Attribute(attributeName);
 }

 protected Instance createNewInstance(int numAttributes,
 Instances trainingDataSet, Collection<Tag> allTags,
 TextDataItem dataItem,boolean isContinuous) {
 Instance instance = new Instance(numAttributes);
 instance.setDataset(trainingDataSet);
 int index = 0;
 TagMagnitudeVector tmv = dataItem.getTagMagnitudeVector();
 Map<Tag, TagMagnitude> tmvMap = tmv.getTagMagnitudeMap();
 for (Tag tag : allTags) {
 TagMagnitude tm = tmvMap.get(tag);
 if (tm != null) {
 setInstanceValue(instance,index++,tm.getMagnitude(),
 isContinuous);
 } else {
 setInstanceValue(instance,index++,0., isContinuous);
 }
 }
 BlogAnalysisDataItem blog = (BlogAnalysisDataItem) dataItem;
 if (blog.isCiRelated()) {
 setInstanceValue(instance,index, 1., isContinuous);
 } else {
 setInstanceValue(instance,index, 0., isContinuous);
 }
 return instance;
 }

 private void setInstanceValue(Instance instance, int index,
 double magnitude, boolean isContinuous) {
 if (isContinuous) {
 instance.setValue(index, magnitude);
 } else {
 if (magnitude > 0.) {
 instance.setValue(index, "true");
 } else {
 instance.setValue(index, "false");
 }
 }
 }

The method createAttribute() creates either discrete or continuous attributes
based on the isContinuous flag. The method createNewInstance() creates a new

Creates binary
representation
for attribute

Creates continuous
representation for
attribute

Creates new
instance for
blog entries

292 CHAPTER 10 Making predictions
instance for each blog entry. It iterates over all the tags and sets the instance value
through the method setInstanceValue(). The value associated with an attribute in
an instance is either true or false for discrete attributes, or the magnitude of the
term in the term vector for continuous attributes.

 Now that we have a dataset that can be used for learning, let’s look at how we can
leverage the WEKA APIs to apply various classification algorithms on this dataset.

10.2.2 Building the classifier class

In this section, we build a wrapper class for calling the WEKA APIs. WEKABlogClassifier
is a generic class that, given an Algorithm, creates the dataset for learning, creates an
instance of the classifier, builds the classifier using the available data, and then evaluates
it. Listing 10.5 shows the implementation for the WEKABlogClassifier class.

package com.alag.ci.blog.classify.weka.impl;

import java.util.Enumeration;

import weka.classifiers.Classifier;
import weka.classifiers.Evaluation;
import weka.classifiers.bayes.BayesNet;
import weka.classifiers.bayes.NaiveBayesSimple;
import weka.classifiers.functions.LibSVM;
import weka.classifiers.trees.J48;
import weka.core.Instance;
import weka.core.Instances;

import com.alag.ci.blog.dataset.impl.WEKAPredictiveBlogDataSetCreatorImpl;

public class WEKABlogClassifier {
 public enum Algorithm {DECISION_TREE, NAIVE_BAYES, BAYES_NET,
 LINEAR_REGRESSION, MLP, RBF};

 public void classify(Algorithm algorithm) throws Exception {
 Instances instances = createLearningDataset();
 Classifier classifier = getClassifier(instances,algorithm);
 evaluateModel(instances, classifier);
 }

 protected Instances createLearningDataset() throws Exception {
 WEKAPredictiveBlogDataSetCreatorImpl dataSetCreator =
 new WEKAPredictiveBlogDataSetCreatorImpl();
 return dataSetCreator.createLearningDataSet(
 "nominalBlogData",false);
 }

 protected void evaluateModel(Instances instances,
 Classifier classifier)
 throws Exception {
 Evaluation modelEval = new Evaluation(instances);
 modelEval.evaluateModel(classifier, instances);
 System.out.println(modelEval.toSummaryString("\nResults\n", true));
 for (Enumeration e = instances.enumerateInstances() ;

Listing 10.5 The implementation of the WEKABlogClassifier class

Enumeration of
some algorithms

Classify
using

specified
algorithm

293Classifying blog entries using WEKA APIs
 e.hasMoreElements() ;) {
 printInstancePrediction((Instance)e.nextElement(),classifier);
 }
 }

 protected void printInstancePrediction(Instance instance,
 Classifier classifier) throws Exception {
 double classification = classifier.classifyInstance(instance);
 System.out.println("Classification = " + classification);
 }

 protected Classifier getClassifier(Instances instances,
 Algorithm algorithm) throws Exception {
 Classifier classifier = getClassifier(algorithm);
 instances.setClassIndex(instances.numAttributes() - 1);
 classifier.buildClassifier(instances);
 return classifier;
 }

 protected Classifier getClassifier(Algorithm algorithm)
 throws Exception {
 Classifier classifier = null;
 if (Algorithm.DECISION_TREE.equals(algorithm)) {
 classifier = new J48();
 } else if (Algorithm.NAIVE_BAYES.equals(algorithm)) {
 classifier = new NaiveBayesSimple() ;
 } else if (Algorithm.BAYES_NET.equals(algorithm)) {
 classifier = new BayesNet() ;
 }
 return classifier;
 }
}

We first define an enumeration, Algorithm, that contains some of the classifier and
regression algorithms supported by WEKA. Note that WEKA supports many more algo-
rithms—more than 50. The method to classify blog entries is fairly straightforward:

public void classify(Algorithm algorithm) throws Exception

It consists of three steps:

1 Creating the dataset to be used for learning
2 Getting the classifier instance based on the specified algorithm and building

the model
3 Evaluating the model that’s created

Note that for classification and regression algorithms, you need to specify the pre-
dicted output attribute. We do this in the method getClassifier:

instances.setClassIndex(instances.numAttributes() - 1);

It’s helpful to look at the output from our classification process. Listing 10.6 shows
the output from one of the runs. It shows a decision tree that correctly classified 55 of
the 60 blog entries presented to it. The details of the decision tree are also shown
(using System.out.println(((J48)classifier).graph());).

Last
attribute
used for
prediction

Selecting
right
algorithm

294 CHAPTER 10 Making predictions
Results
=======

Correctly Classified Instances 55 91.6667 %
Incorrectly Classified Instances 5 8.3333 %
Kappa statistic 0.8052
Mean absolute error 0.1425
Root mean squared error 0.267
Relative absolute error 31.9444 %
Root relative squared error 56.6295 %
Total Number of Instances 60

digraph J48Tree {
N0 [label="ci"]
N0->N1 [label="= true"]
N1 [label="true (6.0)" shape=box style=filled]
N0->N2 [label="= false"]
N2 [label="review"]
N2->N3 [label="= true"]
N3 [label="true (3.0)" shape=box style=filled]
N2->N4 [label="= false"]
N4 [label="machine"]
N4->N5 [label="= true"]
N5 [label="true (3.0)" shape=box style=filled]
N4->N6 [label="= false"]
N6 [label="technology"]
N6->N7 [label="= true"]
N7 [label="true (3.0/1.0)" shape=box style=filled]
N6->N8 [label="= false"]
N8 [label="web"]
N8->N9 [label="= true"]
N9 [label="online"]
N9->N10 [label="= true"]
N10 [label="false (2.0)" shape=box style=filled]
N9->N11 [label="= false"]
N11 [label="true (2.0)" shape=box style=filled]
N8->N12 [label="= false"]
N12 [label="false (41.0/4.0)" shape=box style=filled]
}

In this specific example, the root node, N0, is with the term "ci". When the blog con-
tains the term "ci", it gets classified into the node N1, which has a "true" prediction;
if the blog doesn’t have the term, it leads to node N2. The node N2 has two children
nodes, N3 and N4. One can follow down the node hierarchy to visualize the generated
decision tree.

 Later in section 10.5, we discuss JDM APIs related to the classification process. So
far, we’ve looked at building predictive models for discrete attributes. Next, let’s
briefly look at building predictive models for continuous attributes.

10.3 Regression fundamentals
Perhaps the simplest form of predictive model is to use standard statistical techniques,
such as linear or quadratic regression. Unfortunately, not all real-world problems can

Listing 10.6 Sample output from a decision tree

295Regression fundamentals
be modeled as successfully as linear regression; therefore more complicated tech-
niques such as neural networks and support vector machine (SVM) can be used. The
process of building regression models is similar to classification algorithms, the one
difference being the format of the dataset—for regression, typically all the attributes
are continuous. Note that regression algorithms can also be used for classification,
where the predicted numeric value is mapped to an appropriate categorical value.

 In this section, we briefly review linear regression, and follow with an overview of
two commonly used neural networks—the multi-layer perceptron and the radial basis
function. In the next section, we use the WEKA APIs for regression.

10.3.1 Linear regression

In linear regression, the output value is predicted by summing all values of the input
attributes multiplied by a constant. For example, consider a two-dimensional space
with x and y axes. We want to build a linear model to predict the y value using x values.
This in essence is the representation of a line. Therefore

 y = a x + b
 = [x 1] [a b]T

where a and b are constants that need to be determined.
 We can generalize this equation into a higher dimension using a matrix represen-

tation. Let Y, A, and X be matrices such that

 Y = A X

Note that ATA is a square matrix. The constant X can be found

 X = (ATA)-1 (ATY)

A concrete example helps to visualize and understand the process of linear regres-
sion. To illustrate this process, we use the same example of a Rolex ad that we used
earlier in the chapter. Table 10.9 shows the data that we use for our example. This is
the same as table 10.1, except that we’ve converted the True values into 1.0 and False
values into 0. Note the data for rows corresponding to User 3 and User 4—the input
attribute values for both cases are the same but the output is different.

Table 10.9 The data used for regression

High
net worth

Interested
in watches

Has
purchased items

Bought
the item

User 1 0 1 1 0

User 2 1 0 1 0

User 3 1 1 0 1

User 4 1 1 0 0

User 5 1 1 1 1

296 CHAPTER 10 Making predictions
Let, Y be the predicted value, which in our case is whether the user will buy the item
or not, and let x0, x1, x2, and x3 correspond to the constants that we need to find.
Based on the data in table 10.9, we have

Note that the matrix ATA is a square matrix with a number of rows and columns equal
to the number of parameters being estimated, which in this case is four.

 Now, we need to compute the inverse of the matrix. The inverse of a matrix is such
that multiplying the matrix and its inverse gives the identity matrix. Refer to any book
on linear algebra on how to compute the inverse of a matrix.3

 And its inverse is

Also, ATy = [2 2 2 1]
 Solving for the four constants, we come to the following predictor model:

 P = -1.5 + 1*A + 1*B + 0.5*C

The predicted values for the five cases are shown in table 10.10. Our linear regres-
sion–based predictive model does pretty well in predicting whether the user will pur-
chase the item. Note that the predictions for User 3 and User 4 are the average of the
two cases in the dataset.

3 Or use an online matrix inverter such as http://www.bluebit.gr/matrix-calculator/ and http://www.uni-
bonn.de/~manfear/matrixcalc.php for matrix multiplication. The weka.core.matrix.Matrix class in
WEKA provides a method to compute the inverse of a matrix.

6.5 -3 -3 -2.5

-3 2 1 1

-3 1 2 1

-2.5 1 1 1.5

 Y = [0 0 1 0 1]T

1 0 1 1

1 1 0 1

1 1 1 0

1 1 1 0

1 1 1 1

 X = [x0 x1 x2 x3]T

1 0 1 1

1 1 0 1

1 1 1 0

1 1 1 0

1 1 1 1

A= ATA =

(ATA)-1=

http://www.bluebit.gr/matrix-calculator/
http://www.unibonn.de/~manfear/matrixcalc.php
http://www.unibonn.de/~manfear/matrixcalc.php

297Regression fundamentals
Building a predictive model using linear regression is simple, and, based on the data,
may provide good results. However, for complex nonlinear problems, linear-regression-
based predictive models may have problems generalizing. This is where neural networks
come in: They’re particularly useful in learning complex functions. Multi-layer percep-
tron (MLP) and radial basis function (RBF) are the two main types of neural networks,
which we look at next.

10.3.2 Multi-layer perceptron (MLP)

A multi-layer perceptron has been used exten-
sively for building predictive models. As shown in
figure 10.8, an MLP is a fully-connected network
in which each node is connected to all the nodes
in the next layer. The first layer is known as an
input layer and the number of nodes in this layer
is equal to the number of input attributes. The
second layer is known as a hidden layer and all
nodes from the input layer connect to the hid-
den layer. In figure 10.8 there are three nodes in
the hidden layer.

 The input feeds into each of the first-layer
nodes. The output from a node is split into two
computations. First, the weighted sum of the input values of a node is calculated.
Next, this value is transformed into the output value of the nodes using a nonlinear
activation function. Common activation functions are the sigmoid and the tan hyper-
bolic functions. The advantage of using these activation functions is that their deriva-
tives can be expressed as a function of the output. Also associated with each node is a
threshold that corresponds to the minimum total weighted input required for that
node to fire an output. It’s more convenient to replace the threshold with an extra
input weight. An extra input whose activation is kept fixed at -1 is connected to each
node. Linear outputs are typically used for the output layer.

 For example, the output from node 3 is computed as

 Activation function (W13 * value of node 1 + W23 * value of node 2 – W03)

The back-propagation algorithm is typically used for training the neural network. The
algorithm uses a gradient search technique to find the network weight that minimizes

Purchased the item Prediction

User 1 0 0

User 2 0 0

User 3 1 0.5

User 4 0 0.5

User 5 1 1

Table 10.10 The raw and
the predicted values using
linear regression (continued)

2

1

4

3

6

Input Layer

Hidden Layer

Output Layer

w13
w36

w56

w46

w25
w15

5

Figure 10.8 A multi-layer perceptron
with one hidden layer. The weight Wxy
is the weight from node x to node y. For
example, W25 is the weight from node
2 to node 5.

298 CHAPTER 10 Making predictions
the sum-of-square error between the training set and the predicted values. During
the training process, the network is initialized with random weights. Example inputs
are given to the network; if the network computes an output vector that matches the
target, nothing is done. If there’s a difference between the output and the target vec-
tor, the weights are changed in a way that reduces the error. The method tries to
assess blame for the error and distributes the error among contributing weights. The
algorithm uses a batch mode, where all examples are shown to the network. The cor-
responding error is calculated and propagated through the network. A net gradient
direction is then defined that equals the sum of the gradients for each example.
A step is then taken in the direction opposite to this gradient vector. The step size
is chosen such that the error decreases with each step. The back-propagation
algorithm normally converges to a local optimal solution; there’s no guarantee of a
global solution.

 A neural network with a large number of hidden nodes is in danger of overfitting
the data. Therefore, the process of cross-validation with a test dataset is used to avoid
over-learning. Unlike linear regression, an MLP is a “black box” where it’s difficult to
interpret the parameters of the network, and consequently it’s difficult to understand
the rationale of a prediction made by a neural network. An MLP network requires a
large amount of time to train the parameters associated with the network, but once
the network has been trained, the computation of the output from the network is fast.
An MLP works well when the problem space is large and noisy.

 Next, let’s look at another type of commonly used neural network: radial basis
functions.

10.3.3 Radial basis functions (RBF)

An RBF, as shown in figure 10.9, consists of two
different layers. The inputs feed into a hidden
layer. The hidden layer produces a significant
nonzero response only when the input vector
falls within a small localized region of the
input space. The output layer supplies the net-
work’s response to the activation patterns
applied to the input layer. The transformation
from the input space to the hidden unit space
is nonlinear, whereas the transformation from
the hidden unit space to the output space is
linear. The most common basis for the hidden nodes is the Gaussian kernel function.
The node outputs are in the range of zero to one, so that the closer the input is to the
center of the Gaussian cluster, the larger the response of the node. Each node pro-
duces an identical output that lies a fixed radial distance from the center of the ker-
nel. The output layer nodes form a weighted linear combination of the outputs from
the Gaussian clusters.

G

G

Gaussian Clusters

Output
Input

Figure 10.9 A typical radial basis function

299Regression using WEKA
 Learning in the RBF network is accomplished by breaking the problem into two steps:

1 Unsupervised learning in the hidden layer
2 Supervised learning in the output layer

The k-means algorithm (see section 9.1.3) is typically used for learning the Gaussian
clusters. K-means is a greedy algorithm for finding a locally optimal solution, but it
generally produces good results and is efficient and simple to implement. Once learn-
ing in the hidden layer is completed, learning in the output layer is done using either
the back-propagation algorithm or the matrix inversion process we identified in sec-
tion 10.3.1. The output from the output node is linear. The connection weights to the
output node from the Gaussian clusters can be learned using linear regression. One
advantage of RBF over MLP is that learning tends to be much faster.

 In theory, the RBF network, like the MLP, is capable of forming an arbitrary close
approximation to any continuous nonlinear mapping. The primary difference
between the two is the nature of their basis functions. The hidden layer in an MLP
forms sigmoidal basis functions that are nonzero over an infinitely large region of the
input space; the basis functions in the RBF network cover only small localized regions.

 With this overview of some of the key regression algorithms, let’s look at how to
apply regression using the WEKA APIs.

10.4 Regression using WEKA
In this section, we use the WEKA APIs to build predictive models using regression. The
section is similar to section 10.2; in fact most of the heavy lifting has already been
done. As discussed in section 10.2 and in figure 10.7, we simply need to implement
WEKABlogPredictor, which is shown in listing 10.7.

package com.alag.ci.blog.predict.weka.impl;

import weka.classifiers.Classifier;
import weka.classifiers.functions.LinearRegression;
import weka.classifiers.functions.MultilayerPerceptron;
import weka.classifiers.functions.RBFNetwork;
import weka.core.Instance;
import weka.core.Instances;

import com.alag.ci.blog.classify.weka.impl.WEKABlogClassifier;
import com.alag.ci.blog.dataset.impl.WEKAPredictiveBlogDataSetCreatorImpl;

public class WEKABlogPredictor extends WEKABlogClassifier {

 protected Instances createLearningDataset() throws Exception {
 WEKAPredictiveBlogDataSetCreatorImpl dataSetCreator =
 new WEKAPredictiveBlogDataSetCreatorImpl();
 return dataSetCreator.createLearningDataSet(
 "continuousBlogData",true);
 }

 protected Classifier getClassifier(Algorithm algorithm)
 throws Exception {
 Classifier classifier = null;

Listing 10.7 Implementing regression using the WEKA APIs

Creating
continuous dataset

Creating correct
instance of
classifier

300 CHAPTER 10 Making predictions
 if (WEKABlogClassifier.Algorithm.LINEAR_REGRESSION.
 equals(algorithm)) {
 classifier = new LinearRegression();
 } else if (WEKABlogClassifier.Algorithm.MLP.equals(algorithm)) {
 classifier = new MultilayerPerceptron() ;
 } else if (WEKABlogClassifier.Algorithm.RBF.equals(algorithm)) {
 classifier = new RBFNetwork();
 }
 return classifier;
 }

 protected void printInstancePrediction(Instance instance,
 Classifier classifier) throws Exception {
 double [] prediction =
 classifier.distributionForInstance(instance);
 System.out.print("\nPrediction = ");
 for (double value: prediction) {
 System.out.print(value + ", ");
 }
 }
}

We simply need to overwrite two methods from the parent WEKABlogClassifier class.
First, in the method createLearningDataset(), we pass in parameters indicating that
we want to create continuous attributes. Second, we need to overwrite the getClassi-
fier() method to get the appropriate classifier based on the specified algorithm. The
listing shows the code for creating instances for three of the algorithms covered in this
chapter: linear regression, MLP, and RBF.

 So far we’ve looked at how we can build predictive models for both the discrete
and continuous attributes. Next, let’s briefly look at how the standard JDM APIs deal
with classification and regression.

10.5 Classification and regression using JDM
In this section, we briefly review the key JDM interfaces related to classification and
regression algorithms. The javax.datamining.supervised package contains the
interfaces for representing the supervised learning model. It also contains subpack-
ages for classification and regression.

 This section is analogous to section 9.3, where we covered JDM-related APIs for
clustering. This section covers JDM-related APIs for supervised learning—both classifi-
cation and regression. We begin by looking at the key JDM supervised learning inter-
faces. This is followed by developing code to build and evaluate predictive models.

10.5.1 Key JDM supervised learning–related classes

As shown in figure 10.10, the results from supervised learning create either a Classi-
ficationModel or a RegressionModel. Both models have a common parent, Super-
visedModel, which extends Model and is a MiningObject.

 For building a supervised learning model, there are two types of settings: Super-
visedSettings and SupervisedAlgorithmSettings.

301Classification and regression using JDM
SupervisedSettings, as shown in figure 10.11, are generic settings associated with
the supervised learning process. ClassificationSettings extends this interface to
contain generic classification-related settings. It supports methods for setting the cost
matrix and prior probabilities that may be used by the classifier. RegressionSettings
also extends SupervisedSettings and contains generic regression-related settings.

 Settings that are specific to a particular algorithm extend the AlgorithmSettings
interface. SupervisedAlgorithmSettings, which extends AlgorithmSettings as
shown in figure 10.12, is a common interface for all algorithm-related settings. Feed-
ForwardNeuralNetSettings, NaiveBayesSettings, SVMClassificationSettings,
SVMRegressionSettings, and TreeSettings are five specific algorithm settings.

 Next, let’s walk through some sample code that will illustrate the process of creat-
ing predictive models using the JDM APIs.

Figure 10.10 The model
interfaces corresponding
to supervised learning

Figure 10.11 Setting interfaces
related to supervised learning

302 CHAPTER 10 Making predictions
10.5.2 Supervised learning settings using the JDM APIs

In this section, we follow an approach similar to section 9.3.2, which illustrated the use
of JDM APIs for clustering. The process for regression and classification is similar; we
illustrate the process for classification.

 We work through an example that has the following five steps:

1 Create the classification settings object.
2 Create the classification task.
3 Execute the classification task.
4 Retrieve the classification model.
5 Test the classification model.

Listing 10.8 shows the code associated with the example and the settings process.

package com.alag.ci.jdm.classification;

import javax.datamining.*;
import javax.datamining.algorithm.svm.KernelFunction;
import javax.datamining.algorithm.svm.classification.*;
import javax.datamining.resource.Connection;
import javax.datamining.supervised.SupervisedAlgorithmSettings;
import javax.datamining.supervised.classification.*;
import javax.datamining.task.*;

public class JDMClassificationExample {

 public void classify(Connection connection) throws JDMException {
 createClassificationSettings(connection);
 createClassificationTask(connection);
 executeClassificationTask(connection);

Listing 10.8 Settings-related code for the classification process

Figure 10.12 Algorithm-specific
settings related to supervised
learning algorithms

Four steps
associated
with example

303Classification and regression using JDM
 retrieveClassificationModel(connection);
 testClassificationModel(connection);
 }

 private void createClassificationSettings(Connection connection)
 throws JDMException {
 ClassificationSettingsFactory classifSettingsFactory =
 (ClassificationSettingsFactory)
 connection.getFactory(
"javax.datamining.supervised.
 classification.ClassificationSettingsFactory");
 ClassificationSettings classificationSettings =

classifSettingsFactory.create();
 classificationSettings.setCostMatrixName("costMatrixName");
 classificationSettings.setTargetAttributeName(
 "targetAttributeName");

 SupervisedAlgorithmSettings algorithmSettings =
createSVMClassificationSettings(connection);

 classificationSettings.setAlgorithmSettings(algorithmSettings);
 connection.saveObject("classificationSettings",
 classificationSettings, false);
 }

 private SupervisedAlgorithmSettings
 createSVMClassificationSettings(Connection
 connection) throws JDMException {
 SVMClassificationSettingsFactory svmClassificationSettingsFactory =
 (SVMClassificationSettingsFactory)
 connection.getFactory(
 "javax.datamining.algorithm.svm.
 classification.SVMClassificationSettingsFactory");
 SVMClassificationSettings svmSettings =
 svmClassificationSettingsFactory.create();
 svmSettings.setKernelFunction(KernelFunction.kGaussian);
 return svmSettings;
 }

The example first creates an instance of ClassificationSettings and sets attributes
associated with the classification process. For this, it sets the cost matrix and the name
of the target attribute:

classificationSettings.setCostMatrixName("costMatrixName");
classificationSettings.setTargetAttributeName("targetAttributeName");

Next, an instance of SVMClassificationSettings is created to specify settings spe-
cific to the SVM classification algorithm. Here, the kernel function is specified to be
Gaussian:

svmSettings.setKernelFunction(KernelFunction.kGaussian);

The algorithm settings are set in the ClusteringSettings instance:

classificationSettings.setAlgorithmSettings(algorithmSettings);

Next, let’s look at creating the classification task.

Classification
process-related

settings

Algorithm-specific
settings

304 CHAPTER 10 Making predictions
10.5.3 Creating the classification task using the JDM APIs

To create an instance of BuildTask for clustering, we use the BuildTaskFactory as
shown in listing 10.9.

 private void createClassificationTask(Connection connection)
 throws JDMException {
 BuildTaskFactory buildTaskFactory = (BuildTaskFactory)
 connection.getFactory(
 "javax.datamining.task.BuildTaskFactory");
 BuildTask buildTask = buildTaskFactory.create(
 "buildDataPhysicalDataSet",
 "classificationSettings", "classificationModel");
 connection.saveObject("classificationBuildTask", buildTask, false);
 }

The BuildTaskFactory creates an instance of the BuildTask. The create() method
to create a BuildTask needs the name of the dataset to be used, the name of the set-
tings object, and the name of the model to be created. In our example, we use the
dataset buildDataPhysicalDataSet, the setting specified in the object classifica-
tionSettings, and the model name classificationModel.

10.5.4 Executing the classification task using the JDM APIs

To execute a build task, we use the execute method on the Connection object, as
shown in listing 10.10.

 private void executeClassificationTask(Connection connection)
 throws JDMException {
 ExecutionHandle executionHandle =
 connection.execute("classificationBuildTask");
 int timeoutInSeconds = 100;
 ExecutionStatus executionStatus = executionHandle.
 waitForCompletion(timeoutInSeconds);
 executionStatus = executionHandle.getLatestStatus();
 if (ExecutionState.success.equals(executionStatus.getState())) {
 //successful state
 }
 }

The code

 ExecutionStatus executionStatus =
executionHandle.waitForCompletion(timeoutInSeconds);

waits for the completion of the classification task and specifies a timeout of 100
seconds. Once the task completes, it looks at execution status to see if the task was
successful.

 Next, let’s look at how we can retrieve the classification model that has been created.

Listing 10.9 Create the classification task

Listing 10.10 Execute the classification task

305Classification and regression using JDM
10.5.5 Retrieving the classification model using the JDM APIs

Listing 10.11 shows the code associated with retrieving a ClassificationModel using
the name of the model and a Connection instance.

 private void retrieveClassificationModel(Connection connection)
 throws JDMException {
 ClassificationModel classificationModel = (ClassificationModel)
 connection.retrieveObject("classificationModel",
 NamedObject.model);
 double classificationError = classificationModel.
 getClassificationError();
 }
}

Once a ClassificationModel is retrieved, we can evaluate the quality of the solution
using the getClassificationError() method, which returns the percentage of incor-
rect predictions by the model.

10.5.6 Retrieving the classification model using the JDM APIs

Listing 10.12 shows the code to compute the test metrics associated with the classifica-
tion model.

private void testClassificationModel(Connection connection)
 throws JDMException {
 ClassificationTestTaskFactory testTaskFactory =
 (ClassificationTestTaskFactory)connection.getFactory(
 "javax.datamining.supervised.classification.ClassificationTestTask");

 ClassificationTestTask classificationTestTask =
 testTaskFactory.create("testDataName", "classificationModel",
 "testResultName");
 classificationTestTask.computeMetric(
 ClassificationTestMetricOption.confusionMatrix);
 }

The ClassificationTestTask is used to test a classification model to measure its
quality. In this example, we’re testing the confusion matrix—a two-dimensional
matrix that indicates the number of correct and incorrect predications a classification
algorithm has made.

 The JDM specification contains additional details on applying the model; for more
details on this, please refer to the JDM specification.

 In this section, we’ve looked at the key interfaces associated with supervised learn-
ing and the JDM APIs. We’ve looked at some sample code associated with creating
classification settings, creating and executing a classification task, retrieving the classi-
fication model, and testing the classification model.

Listing 10.11 Retrieving the classification model

Listing 10.12 Testing the classification model

306 CHAPTER 10 Making predictions
10.6 Summary
In your application, you’ll come across a number of cases where you want to build a
predictive model. The prediction may be in the form of automatically segmenting
content or users, or predicting unknown attributes of a user or content.

 Predictive modeling consists of creating a mathematical model to predict an out-
put attribute using other input attributes. Predictive modeling is a kind of supervised
learning where the algorithm uses training examples to build the model. There are
two kinds of predictive models based on whether the output attribute is discrete or
continuous. Classification models predict discrete attributes, while regression models
predict continuous attributes.

 A decision tree is perhaps one of the simplest and most commonly used predictive
models. Decision tree learning algorithms use the concept of information gain to
identify the next attribute to be used for splitting on a node. Decision trees can be eas-
ily converted into if-then rules. The Naïve Bayes’ classifier uses concepts from proba-
bility theory to build a predictive model. To simplify matters, it assumes that given the
output, each of the input attributes are conditionally independent of the others.
Although this assumption may not be true, in practice it often produces good results.
Bayes’ networks or probabilistic reasoning provide a graphical representation for
probability-based inference. Bayes’ networks deal well with missing data.

 In linear regression, the output attribute is assumed to be a linear combination of
the input attributes. Typically, the process of learning the model constants involves
matrix manipulation and inversion. MLP and RBF are two types of neural networks
that provide good predictive capabilities in nonlinear space.

 The WEKA package has a number of supervised learning algorithms, both for clas-
sification and regression. The process of classification consists of first creating an
instance of Instances to represent the dataset, followed by creating an instance of a
Classifier and using an Evaluation to evaluate the classification results.

 The process of classification and regression using the JDM APIs is similar. Classifi-
cation with the JDM APIs involves creating a ClassificationSettings instance, creat-
ing and executing a ClassificationTask, and retrieving the ClassificationModel
that’s created.

 Now that we have a good understanding of classification and regression, in the
next chapter we look at intelligent search.

10.7 Resources
 Alag, Satnam. A Bayesian Decision-Theoretic Framework for Real-Time Monitoring and Diagnosis. 1996.

Ph.D dissertation. University of California, Berkeley.
 Jensen, Finn. An Introduction to Bayesian Networks. 1996. Springer-Verlag.
 Quinlan, J. Ross. C4.5: Programs for Machine Learning. 1993. Morgan Kaufmann Series in

Machine Learning.
 Russel, Stuart J. and Peter Norvig. Artificial Intelligence: A Modern Approach. 2002. Prentice Hall.
 Tan, Pang-Ning, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining. 2005.

Addison Wesley.
 Witten, Ian H. and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques,

Second Edition. 2005. Morgan Kaufmann Series in Data Management Systems.

Part 3

Applying intelligence
 in your application

In this last part of the book, we focus on applying some of the concepts that
we’ve developed throughout the book. Part 3 consists of two chapters: the first
on intelligent search, and the second on building a recommendation engine.

 Chapter 11 on intelligent search should give you a good overview of embed-
ding search into your application using Lucene, along with some discussion of
trends in the area of intelligent search. Chapter 12 deals with building a recom-
mendation engine using both content-based and collaborative-based approaches.
We also go through real-world case studies of personalization by Amazon, Google
News, and Netflix.

Intelligent search
Search is ubiquitous and a multi-billion-dollar business. According to Nielsen Net
Ratings, in the month of July 2008, an estimated 4.8 billion searches1 were carried
out by Google. This amounted to 60 percent of all searches performed in the US
during this period. There’s hardly any application now that doesn’t provide a
search capability within the application. In this chapter, we look at how you can add
search capabilities to your application using Lucene and how you can make the
search intelligent.

 If you haven’t done so, it’s worthwhile to review chapter 6. In that chapter, we
looked at intelligent web crawling using Nutch, which uses Lucene. As a precursor
to this chapter, you should have also reviewed chapter 8, in which we introduced
the various Lucene analyzers and the fundamentals of text parsing.

This chapter covers
■ Understanding search fundamentals
■ Indexing and searching using Lucene
■ Useful tools and framework for intelligent search
■ Six trends in the area of intelligent search

1 http://www.nielsen-netratings.com/pr/pr_080819_3.pdf
309

http://www.nielsen-netratings.com/pr/pr_080819_3.pdf

310 CHAPTER 11 Intelligent search
 We begin the chapter by looking at some of the fundamental concepts related to
text search. We briefly review the process of creating an index and searching the
index with Lucene. After that, we take a deeper look at indexing. Then we review the
process of searching with Lucene and some of the advanced search concepts that we
later use in the section about intelligent search. We look at some useful search-related
tools and frameworks. Finally, we look at how search within your application can be
made more intelligent and personalized for the user. At the end of this chapter, you
should be able to add search to your application, make it intelligent, and personalize
it for the user.

11.1 Search fundamentals
Given a query—a keyword or a phrase—search is the process of retrieving documents
that are relevant to the query. The list of documents is generally returned in the order
of how relevant they are to the query. You’re already familiar with term vectors; in
essence, search is the process of creating a term-vector representation for the query
and retrieving documents whose term vector is most similar to that of the query term
vector. Of course, we want the results to return quickly, and to make our search service
scalable so that it can handle multiple simultaneous queries.

 Recall and precision are two commonly used metrics to quantify the quality of search
results—this is similar to evaluating the quality of documents retrieved by a crawler, as
discussed in chapter 6. Recall is the percentage of relevant documents that were
returned, while precision is the percentage of documents that you found relevant. For
example, if there are 10 relevant documents and a search result returned 8 results, 5
of which were relevant, then recall is 5/10 = 50%, while precision is 5/8 = 62.5%. Fur-
thermore, we want to make our search intelligent by using additional contextual
information, such as the user’s interests.

 Manning has an excellent book on Lucene, Lucene in Action, by Gospodnetic and
Hatcher. This book is a must read if you’re going to be doing any serious work with
Lucene in your application.

 In this section, we briefly introduce some of the key search concepts. We review the
key Lucene classes that will be used and end the section by implementing an example
that demonstrates the search process. We begin with a brief introduction reviewing
the process involved in adding search to your application. This is followed by looking
at some of the core Lucene classes and working through an example.

11.1.1 Search architecture

As shown in figure 11.1, there are four entities involved in adding search to your appli-
cation: documents to be indexed, an asynchronous indexing service, the search index,
and a synchronous query service.

 There are two main services that you need to build to add search to your applica-
tion. First is an asynchronous indexing service, which is responsible for creating a
search index—a reverse index of terms with related documents. Depending on the

http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html

311Search fundamentals
size of your documents, it may take a long time to create a full index, and this process
is typically done offline or asynchronously. Once a search index has been created, this
service may update the index, either through periodic polling for document changes
or by being notified of changes through an event notification. The indexing service is
responsible for keeping the search index created up-to-date.

 The second service is the query or search service. This service is responsible for
taking a user query and converting it into an appropriate term-vector representation
and retrieving relevant documents from the search index. This search service is state-
less—it receives a query and returns a response back, without holding on to any state
information—which makes it possible to have multiple instances of this service servic-
ing client requests. The service can be collocated in the same JVM as your web applica-
tion, or it may be distributed on remote machines. Having multiple instances of the
stateless search services, front-ended with a load balancer and servicing requests over
HTTP, is a common architecture used to deploy search services. In this architecture, as
load increases, more instances of the service are added to the load balancer.

 With that brief overview, let’s look at some of the core classes that are used for
indexing and searching using Lucene.

11.1.2 Core Lucene classes

As shown in figure 11.2, IndexWriter is the main class for creating and maintaining
a Lucene index. An IndexWriter uses a Directory object to create an index. It also
uses an Analyzer (refer to section 8.1) to analyze documents. A Document is a set of
fields with a name and a textual value. Each field should correspond to information
that you’ll search against or display in the search results. Documents are atomic
entities that are added to an index and retrieved from the index through search.
Not all documents in an index need have the same set of fields. Also, the weight
associated with each document or field for searching can be different, using a pro-
cess known as boosting.

 The IndexReader class contains methods for deleting Document instances from the
index. At any given time, only one thread, either IndexReader or IndexWriter, should
modify an index. If you look at the source of the IndexWriter and IndexReader, you’ll
find a number of synchronized checks that ensure that the same instance can be
shared across multiple threads. An IndexReader is unaware of any changes to the

3. Search
Index

2.
Indexing
Service

uses creates

Search
Queries

1. Documents

4. Query
Service

L
B

Figure 11.1 The entities
involved with adding
search to your application

http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html
http://javadoc.sertice.org/lucene-2.1.0/org/apache/lucene/search/Sort.html#setSort%28java.lang.String, boolean%29
http://java.sun.com/j2se/1.4/docs/api/java/lang/String.html

312 CHAPTER 11 Intelligent search
index once it’s been opened; you may need to periodically reopen it to see any
changes made after it was opened.

 A QueryParser uses an Analyzer—this should be the same as the one used for
indexing—to convert a user query into a Query object. An instance of a Searcher then
uses this Query to search through the search index to return a Hits object. It’s safe to
have multiple search queries—read-only operations—executed on an index in paral-
lel, even while an index is being created or modified by a different thread.

 The search index is accessed using the Directory object. The Hits object contains
by composition a number of Hit objects. Each Hit object provides access to the under-
lying document. Figure 11.2 shows two types of the Searcher—the IndexSearcher for
searching a single index and the MultiSearcher for searching through multiple
indexes sequentially. ParallelMultiSearcher searches multiple indexes in parallel.
Figure 11.2 also shows two kinds of Directory classes—the first, FSDirectory, is used
for storing the index on the file system, while the second one, RAMDirectory, is used
for creating an in-memory index. The in-memory index is useful for writing tests,
whereas the index is created as a part of the test and then destroyed at the end of the
test. Since RAMDirectory does everything in memory, it’s much faster than FSDirec-
tory and can also be used for services that require fast performance, such as an auto-
complete service.

 Next, let’s put these core classes into action. We illustrate the basic process of
indexing and searching by applying it to an example.

Figure 11.2 The key Lucene classes for creating and searching an index

313Search fundamentals
11.1.3 Basic indexing and searching via example

We build on our example from the previous chapters of retrieving blog entries from
the blogosphere using Technorati. We first create an index of all the blog entries
we’ve retrieved and then search through them using the Lucene APIs. If you haven’t
done so, it’ll be worthwhile to review chapter 5 and section 9.1.2, which contains the
implementation for BlogDataSetCreatorImpl. BlogDataSetCreatorImpl is used in
this example to retrieve data from the blogosphere.

 This example is split into three main parts and relates to the steps shown in fig-
ure 11.1:

1 Retrieving blog data from the blogosphere
2 Creating a Lucene index using the blog entries
3 Searching the Lucene index for certain phrases

We implement a class called BlogSearchExample for this section. The code for this
class is split into three parts, one for each of the three parts. At this stage it’s helpful to
look at listing 11.1, which shows the main method for the BlogSearchExample.

 public static void main(String [] args) throws Exception {
 BlogSearchExample bs = new BlogSearchExample();
 String tag = "collective intelligence";
 String luceneIndexPath = "blogSearchIndex";

 BlogQueryResult blogQueryResult =
 bs.getBlogsFromTechnorati(tag);
 Directory indexDirectory = bs.createSearchIndex(luceneIndexPath,
 blogQueryResult);
 bs.searchForBlogs(indexDirectory, tag);
 }

The main method consists of three main lines of code, corresponding to the three
parts enumerated previously.
RETRIEVING BLOG ENTRIES FROM TECHNORATI

Listing 11.2 shows the first part of the code for BlogSearchExample, which deals with
retrieving blog entries from Technorati.

package com.alag.ci.search.lucene;

import java.io.IOException;
import java.util.*;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.document.*;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.*;
import org.apache.lucene.store.Directory;

Listing 11.1 The main method for the BlogSearchExample

Listing 11.2 Retrieving blog entries from Technorati

Retrieve blog entries

Create search index

Search for blog entries

314 CHAPTER 11 Intelligent search
import com.alag.ci.blog.dataset.impl.BlogDataSetCreatorImpl;
import com.alag.ci.blog.search.*;
import com.alag.ci.textanalysis.lucene.impl.*;

public class BlogSearchExample {

 public BlogQueryResult getBlogsFromTechnorati(String tag)
 throws BlogSearcherException {
 return (new BlogDataSetCreatorImpl()).getBlogsFromTechnorati(tag);
 }

To retrieve data from Technorati, we use BlogDataSetCreatorImpl, which we devel-
oped in section 9.1.2 and listing 9.6. The method getBlogsFromTechnorati returns a
BlogQueryResult object using the passed-in tag. Next, let’s look at how this data is
converted into a search index.
CREATING A SEARCH INDEX

Listing 11.3 shows the next part of the code for BlogSearchExample, which deals with
creating a search index.

 public Directory createSearchIndex(String path,
 BlogQueryResult blogQueryResult) throws Exception{
 IndexWriter indexWriter = new IndexWriter(path,
 getAnalyzer(), true);

 indexWriter.setUseCompoundFile(false);
 Directory indexDirectory = indexWriter.getDirectory();
 indexBlogEntries(indexWriter,
 blogQueryResult.getRelevantBlogs());
 System.out.println("Number of docs indexed = " +
 indexWriter.docCount());
 indexWriter.optimize();
 indexWriter.close();
 return indexDirectory;
 }

 private void indexBlogEntries(IndexWriter indexWriter,
 List<RetrievedBlogEntry> blogEntries) throws Exception {
 int count = 1;
 for (RetrievedBlogEntry blogEntry: blogEntries) {
 indexWriter.addDocument(getDocument(blogEntry));
 System.out.println("" + count ++ + blogEntry + "\n");
 }
 }

 private Document getDocument(RetrievedBlogEntry blogEntry) {
 Document document = new Document();
 BlogDataSetCreatorImpl dataSetCreator =
 new BlogDataSetCreatorImpl();
 String completeText = dataSetCreator.composeTextForAnalysis(
 blogEntry);
 addField(document,"completeText",completeText, Field.Store.YES,
 Field.Index.TOKENIZED , Field.TermVector.YES);
 addField(document,"name",blogEntry.getName(), Field.Store.YES,

Listing 11.3 Creating a search index

Create
IndexWriter
using
specified path

Don’t use compound file
Add blog
entries to index

Optimize and
close index

Create field with
complete text

315Search fundamentals
 Field.Index.TOKENIZED , Field.TermVector.YES);
 addField(document,"title",blogEntry.getTitle(), Field.Store.YES,
 Field.Index.TOKENIZED , Field.TermVector.YES);
 addField(document,"excerpt",blogEntry.getExcerpt(),
 Field.Store.YES,
 Field.Index.TOKENIZED , Field.TermVector.YES);
 addField(document,"url",blogEntry.getUrl(), Field.Store.YES,
 Field.Index.UN_TOKENIZED , Field.TermVector.YES);
 addField(document,"author",blogEntry.getAuthor(), Field.Store.NO,
 Field.Index.UN_TOKENIZED , Field.TermVector.YES);
 return document;
 }

private void addField(Document document, String fieldName,String value,
 Field.Store fieldStore, Field.Index fieldIndex,
 Field.TermVector fieldTermVector) {
 Field field = new Field(fieldName, getNotNullValue(value),
 fieldStore, fieldIndex, fieldTermVector);
 document.add(field);
 }

 private String getNotNullValue(String s) {
 if (s != null) {
 return s;
 }
 return "";
 }

 private Analyzer getAnalyzer() throws IOException {
 return new SynonymPhraseStopWordAnalyzer(
 new SynonymsCacheImpl(),new PhrasesCacheImpl());
 }

We first create an instance of the IndexWriter using the specified directory path
name and the Analyzer. The last parameter, true, specifies that it’s okay to create the
index or overwrite the existing one. Passing in false would’ve appended to an exist-
ing index:

 IndexWriter indexWriter = new IndexWriter(path, getAnalyzer(), true);

Note that we use the SynonymPhraseStopWordAnalyzer, which we developed in sec-
tion 8.1.4. The following code

indexWriter.setUseCompoundFile(false);

implies that we don’t want to use compound files. If it had been turned on, it would
signify that multiple files for each segment would be merged into a single file when a
new segment is flushed. Refer to http://lucene.apache.org/java/docs/filefor-
mats.html if you’re interested in learning more about the Lucene index format.

 The following line of code

indexBlogEntries(indexWriter, blogQueryResult.getRelevantBlogs());

iterates over each blog entry, creates a document, and adds it to the index.
The method getDocument() creates a Document object from a blog entry. For each

Custom Analyzer
from section 8.1.4

http://lucene.apache.org/java/docs/fileformats.html
http://lucene.apache.org/java/docs/fileformats.html

316 CHAPTER 11 Intelligent search
blog entry, we first create a Field using the complete text representation for the
blog entry:

String completeText = dataSetCreator.composeTextForAnalysis(
 blogEntry);

To create the Field:

 Field field = new Field(fieldName, getNotNullValue(value),
 Field.Store.YES, fieldIndex, fieldTermVector);

We specify the field name, set a non-null value and specify whether the field is to be
stored in the index and whether it’s to be tokenized, and whether we want to store the
term vector for that field in the index. Storing a field implies that the content of the
field will be literally stored in the index and can be retrieved later from search results.
A field that isn’t stored is still indexed by Lucene. Note that we don’t tokenize the
URL. Fields that are tokenized (Field.Index.TOKENIZED) can’t be used for sorting
the results obtained by querying the index. So if you plan to use Lucene for sorting
the results using a sort order other than relevance, you need to add a field that’s
Field.Index.UN_TOKENIZED. Setting the option to Field.Index.NO implies that the
value of the field won’t be indexed by Lucene. When the document.add() method is
called multiple times with the same field name but different value objects, Lucene
internally will concatenate all the values together for that particular field. As a rule of
thumb, in most applications, you want to store all the parameters that you’ll show in
your search results. This typically includes title, URL, and abstract; avoid having to
make a database call to show each of the results in your search results page. Try to
retrieve all the information that’s displayed from Lucene.

 Once all the blog entries have been added to the index, we print out the number
of entries added to the index using indexWriter.docCount(). Lastly, we optimize and
close the index using

indexWriter.optimize();
 indexWriter.close();

Listing 11.4 shows sample output from the code for one of the runs.

1 Name: Wikinomics
Url: http://204.15.36.163:8080/blog
Title: Is Digg Making Us Dumber?
Excerpt: If you started reading this post based on the title, you've
already half proven the point I'm about to argue. Sensationalism
combined with social med
LastUpdateTime: Mon Feb 25 20:03:23 PST 2008

2 Name: Wikinomics
Url: http://www.wikinomics.com/blog
Title: Is Digg Making Us Dumber?
Excerpt: If you started reading this post based on the title, you've
already half proven the point I'm about

Listing 11.4 Sample output from indexing the blogs

317Search fundamentals
LastUpdateTime: Tue Feb 26 06:19:03 PST 2008

3 Name: BSG Alliance - Next Generation Enterprises. On Demand.
Url: http://www.bsgalliance.com
Title: Is Digg Making Us Dumber?
Excerpt: Citation - content was aggregated by Kalivo Listener from 3rd
party: Credited Author: Naumi Haque So
LastUpdateTime: Mon Feb 25 22:40:00 PST 2008

4 Name: Social Media Explorer
Url: http://www.socialmediaexplorer.com
Title: Exploring Social Media Measurement: Collective Intellect
Excerpt: This entry in our ongoing exploration of social media
measurement firms focuses on Collective Intel
LastUpdateTime: Mon Feb 25 11:00:53 PST 2008
Author: Jason Falls

……….

10 Name: Et si l'on parlait Marketing
Url: http://henrikaufman.typepad.com/et_si_lon_parlait_marketi
Title: Imagination 3.0
Excerpt: En Octobre 2007, j'avais analysé l'excellent livre de mon ami
Brice Auckenthaler : L'Imagination C
LastUpdateTime: Mon Feb 25 23:22:20 PST 2008

That’s it! We’ve added all the blog entries to our index and we can now search the
index.
SEARCHING THE INDEX

Searching the index using a query is fairly straightforward. Listing 11.5 shows the
third part of the code for this example, which deals with searching the index.

 public void searchForBlogs(Directory directory, String queryString)
 throws Exception {
 IndexSearcher indexSearcher =
 new IndexSearcher(directory);
 QueryParser queryParser = new QueryParser(
 "completeText",getAnalyzer());
 Query query =
 queryParser.parse(queryString);
 Hits hits =
 indexSearcher.search(query);
 System.out.println("Number of results = " + hits.length() +
 " for " + queryString);
 Iterator iterator = hits.iterator();
 while (iterator.hasNext()) {
 Hit hit = (Hit) iterator.next();
 Document document = hit.getDocument();
 System.out.println(document.get("completeText"));

 Explanation explanation = indexSearcher.explain(weight,
 hit.getId());
 System.out.println(explanation.toString());

Listing 11.5 Searching the index

Create instance of IndexSearcher

Create instance of QueryParser

Create Query from QueryParser

Retrieve Hits from IndexSearcher

Retrieve
Document from
Hit object

Explain
query
result

318 CHAPTER 11 Intelligent search
 }
 }
indexSearcher.close();
}

We first create an instance of the IndexSearcher using the Directory that was passed
in to the index. Alternatively, you can use the path to the index to create an instance
of a Directory using the static method in FSDirectory:

Directory directory = FSDirectory.getDirectory(luceneIndexPath);

Next, we create an instance of the QueryParser using the same analyzer that we used
for indexing. The first parameter in the QueryParser specifies the name of the
default field to be used for searching. For this we specify the completeText field that
we created during indexing. Alternatively, one could use MultiFieldQueryParser to
search across multiple fields. Next, we create a Query object using the query string
and the QueryParser. To search the index, we simply invoke the search method in
the IndexSearcher:

Hits hits = indexSearcher.search(query);

The Hits object holds the ranked list of resulting documents. It has a method to
return an Iterator over all the instances, along with retrieving a document based on
the resulting index. You can also get the number of results returned using
hits.length(). For each of the returned documents, we print out the title and
excerpt fields using the get() method on the document. Note that in this example,
we know that the number of returned blog entries is small. In general, you should iter-
ate over only the hits that you need. Iterating over all hits may cause performance
issues. If you need to iterate over many or all hits, you should use a HitCollector, as
shown later in section 11.3.7.

 The following code demonstrates how Lucene scored the document for the query:

Explanation explanation = indexSearcher.explain(weight, hit.getId());

We discuss this in more detail in section 11.3.1.
 It is useful to look at listing 11.6, which shows sample output from running the

example. Note that your output will be different based on when you run the exam-
ple—it’s a function of whichever blog entries on collective intelligence have been cre-
ated in the blogosphere around the time you run the program.

Number of docs indexed = 10
Number of results = 3 for collective intelligence
Collective Knowing Gates of the Future From the Middle I
recently wrote an article on collective intelligence that I will share h
0.8109757 = (MATCH) sum of:
 0.35089532 = (MATCH) weight(completeText:collective in 7), product of:
 0.5919065 = queryWeight(completeText:collective), product of:
 1.9162908 = idf(docFreq=3)

Listing 11.6 Sample output from our example

319Search fundamentals
 0.30888134 = queryNorm
 0.5928222 = (MATCH) fieldWeight(completeText:collective in 7),
product of:
 1.4142135 = tf(termFreq(completeText:collective)=2)
 1.9162908 = idf(docFreq=3)
 0.21875 = fieldNorm(field=completeText, doc=7)
 0.46008033 = (MATCH) weight(completeText:intelligence in 7), product of:
 0.80600667 = queryWeight(completeText:intelligence), product of:
 2.609438 = idf(docFreq=1)
 0.30888134 = queryNorm
 0.57081455 = (MATCH) fieldWeight(completeText:intelligence in 7),
 product of:
 1.0 = tf(termFreq(completeText:intelligence)=1)
 2.609438 = idf(docFreq=1)
 0.21875 = fieldNorm(field=completeText, doc=7)

Exploring Social Media Measurement: Collective Intellect Social Media
Explorer Jason Falls This entry in our ongoing exploration of
social media measurement firms focuses on Collective Intel
0.1503837 = (MATCH) product of:
 0.3007674 = (MATCH) sum of:
 0.3007674 = (MATCH) weight(completeText:collective in 3), product of:
 0.5919065 = queryWeight(completeText:collective), product of:
 1.9162908 = idf(docFreq=3)
 0.30888134 = queryNorm
 0.5081333 = (MATCH) fieldWeight(completeText:collective in 3),
 product of:
 1.4142135 = tf(termFreq(completeText:collective)=2)
 1.9162908 = idf(docFreq=3)
 0.1875 = fieldNorm(field=completeText, doc=3)
 0.5 = coord(1/2)

Boites a idées et ingeniosité collective Le perfologue, le blog pro de
la performance et du techno management en entreprise. Alain Fernandez
Alain Fernandez Les boîte à idées de new génération Pour capter
l'ingéniosité collective, passez donc de la boîte à
0.1002558 = (MATCH) product of:
 0.2005116 = (MATCH) sum of:
 0.2005116 = (MATCH) weight(completeText:collective in 4), product of:
 0.5919065 = queryWeight(completeText:collective), product of:
 1.9162908 = idf(docFreq=3)
 0.30888134 = queryNorm
 0.33875555 = (MATCH) fieldWeight(completeText:collective in 4),
 product of:
 1.4142135 = tf(termFreq(completeText:collective)=2)
 1.9162908 = idf(docFreq=3)
 0.125 = fieldNorm(field=completeText, doc=4)
 0.5 = coord(1/2)

As expected, 10 documents were retrieved from Technorati and indexed. One of
them had collective intelligence appear in the retrieved text and was ranked the highest,
while the other two contained the term collective.

 This completes our overview and example of the basic Lucene classes. You should
have a good understanding of what’s required to create a Lucene index and for

320 CHAPTER 11 Intelligent search
searching the index. Next, let’s take a more detailed look at the process of indexing
in Lucene.

11.2 Indexing with Lucene
During the indexing process, Lucene takes in Document objects composed of Fields.
It analyzes the text associated with the Fields to extract terms. Lucene deals only with
text. If you have documents in nontext format such as PDF or Microsoft Word, you
need to convert it into plain text that Lucene can understand. A number of open
source tool kits are available for this conversion; for example PDFBox is an open
source library available for handling PDF documents.

 In this section, we’take a deeper look at the indexing process. We begin with a
brief introduction of the two Lucene index formats. This is followed by a review of the
APIs related to maintaining the Lucene index, some coverage of adding incremental
indexing to your application, ways to access the term vectors, and finally a note on
optimizing the indexing process.

11.2.1 Understanding the index format

A Lucene index is an inverted text index, where each term is associated with documents
in which the term appears. A Lucene index is composed of multiple segments. Each
segment is a fully independent, searchable index. Indexes evolve when new docu-
ments are added to the index and when existing segments are merged together. Each
document within a segment has a unique ID within that segment. The ID associated
with a document in a segment may change as new segments are merged and deleted
documents are removed. All files belonging to a segment have the same filename with
different file extensions. When the compound file format is used, all the files are
merged into a single file with a .CFS extension. Figure 11.3 shows the files created for
our example in section 11.1.3 using a non-compound file structure and a compound
file structure.

 Once an index has been created, chances are that you may need to modify the
index. Let’s next look at how this is done.

a. Non-compound file

b. Compound file

Figure 11.3 Non-compound and compound index files

321Indexing with Lucene
11.2.2 Modifying the index

Document instances in an index can be deleted using the IndexReader class. If a docu-
ment has been modified, you first need to delete the document and then add the new
version of the document to the index. An IndexReader can be opened on a directory
that has an IndexWriter opened already, but it can’t be used to delete documents
from the index at that point.

 There are two ways to delete documents from an index, as shown in listing 11.7.

 public void deleteByIndexId(Directory indexDirectory, int docIndexNum)
 throws Exception {
 IndexReader indexReader = IndexReader.open(indexDirectory);
 indexReader.deleteDocument(docIndexNum);
 indexReader.close();
 }

 public void deleteByTerm(Directory indexDirectory, String externalId)
 throws Exception {
 Term deletionTerm = new Term("externalId", externalId);
 IndexReader indexReader = IndexReader.open(indexDirectory);
 indexReader.deleteDocuments(deletionTerm);
 indexReader.close();
 }

Each document in the index has a unique ID associated with it. Unfortunately, these
IDs can change as documents are added and deleted from the index and as segments
are merged. For fast lookup, the IndexReader provides access to documents via their
document number. There are four static methods that provide access to an
IndexReader using the open command. In our example, we get an instance of the
IndexReader using the Directory object. Alternatively, we could have used a File or
String representation to the index directory.

IndexReader indexReader = IndexReader.open(indexDirectory);

To delete a document with a specific document number, we simply call the delete-
Document method:

indexReader.deleteDocument(docIndexNum);

Note that at this stage, the document hasn’t been actually deleted from the index—it’s
simply been marked for deletion. It’ll be deleted from the index when we close the
index:

indexReader.close();

A more useful way of deleting entries from the index is to create a Field object within
the document that contains a unique ID string for the document. As things change in
your application, simply create a Term object with the appropriate ID and field name
and use it to delete the appropriate document from the index. This is illustrated
in the method deleteByTerm(). The IndexReader provides a convenient method,
undeleteAll(), to undelete all documents that have been marked for deletion.

Listing 11.7 Deleting documents using the IndexReader

Delete document based
on index number

Delete documents
based on term

322 CHAPTER 11 Intelligent search
 Opening and closing indexes for writing tends to be expensive, especially for large
indexes. It’s more efficient to do all the modifications in a batch. Further, it’s more
efficient to first delete all the required documents and then add new documents, as
shown in listing 11.8.

 public void illustrateBatchModifications(Directory indexDirectory,
 List<Term> deletionTerms,
 List<Document> addDocuments) throws Exception {
 IndexReader indexReader = IndexReader.open(indexDirectory);
 for (Term deletionTerm: deletionTerms) {
 indexReader.deleteDocuments(deletionTerm);
 }
 indexReader.close();
 IndexWriter indexWriter = new IndexWriter(indexDirectory,
 getAnalyzer(),false);
 for (Document document: addDocuments) {
 indexWriter.addDocument(document);
 }
 indexWriter.optimize();
 indexWriter.close();
 }

Note that an instance of IndexReader is used for deleting the documents, while an
instance of IndexWriter is used for adding new Document instances.

 Next, let’s look at how you can leverage this to keep your index up to date by incre-
mentally updating your index.

11.2.3 Incremental indexing

Once an index has been created, it needs to be updated to reflect changes in the appli-
cation. For example, if your application is leveraging user-generated content, the
index needs to be updated with new content being added, modified, or deleted by the
users. A simple approach some sites follow is to periodically—perhaps every few
hours—re-create the complete index and update the search service with the new
index. In this mode, the index, once created, is never modified. However, such an
approach may be impractical if the requirement is that once a user generates new con-
tent, the user should be able to find the content shortly after addition. Furthermore,
the amount of time taken to create a complete index may be too long to make this
approach feasible. This is where incremental indexing comes into play. You may still want
to re-create the complete index periodically, perhaps over a longer period of time.

 As shown in figure 11.4, one of the simplest deployment architectures for search is
to have multiple instances of the search service, each having its own index instance.
These search services never update the index themselves—they access the index in
read-only mode. An external indexing service creates the index and then propagates
the changes to the search service instances. Periodically, the external indexing service
batches all the changes that need to be propagated to the index and incrementally
updates the index. On completion, it then propagates the updated index to the

Listing 11.8 Batch deletion and addition of documents

Batch deletion

Batch addition

323Indexing with Lucene
search instances, which periodically create a new version of the IndexSearcher. One
downside of such an approach is the amount of data that needs to be propagated
between the machines, especially for very large indexes.

 Note that in the absence of an external index updater, each of the search service
instances would have to do work to update their indexes, in essence duplicating the
work.

 Figure 11.5 shows an alternate architecture in which
multiple search instances are accessing and modifying the
same index. Let’s assume that we’re building a service,
IndexUpdaterService, that’s responsible for updating the
search index. For incremental indexing, the first thing we
need to ensure is that at any given time, there’s only one
instance of an IndexReader modifying the index.

 First, we need to ensure that there’s only one instance of
IndexUpdaterService in a JVM—perhaps by using the Sin-
gleton pattern or using a Spring bean instance. Next, if mul-
tiple JVMs are accessing the same index, you’ll need to
implement a global-lock system to ensure that only one instance is active at any given
time. We discuss two solutions for this, first using an implementation that involves the
database, and second using the Lock class available in Lucene. The second approach
involves less code, but doesn’t guard against JVM crashes. When a JVM crashes, the lock
is left in an acquired state and you have to manually release or delete the lock file.

 The first approach uses a timer-based mechanism that periodically invokes the
IndexUpdaterService and uses a row in a database table to create a lock. The Index-
UpdaterService first checks to see whether any other service is currently updating the
index. If no services are updating the index—if there’s no active row in the database
table—it inserts a row and sets its state to be active. This service now has a lease on
updating the index for a period of time. This service would then process all the
changes—up to a maximum number that can be processed in the time frame of the
lease—that have to be made to the index since the last update. Once it’s done, it sets
the state to inactive in the database, allowing other service instances to then do an

Search Search Search

Index

Creator/

Updator

RR R M

Asynchronous

Figure 11.4 A simple deployment
architecture where each search
instance has its own copy of a read-
only index. An external service creates
and updates the index, pushing the
changes periodically to the servers.

Search Search Search

M

Figure 11.5 Multiple
search instances sharing
the same index

324 CHAPTER 11 Intelligent search
update. To avoid JVM crashes, there’s also a timeout associated with the active state for
a service.

 The second approach is similar, but uses the file-based locking provided by
Lucene. When using FSDirectory, lock files are created in the directory specified by
the system property org.apache.lucene.lockdir if it’s set; otherwise the files are cre-
ated in the computer’s temporary directory (the directory specified by the
java.io.tmpdir system directory). When multiple JVM instances are accessing the
same index directory, you need to explicitly set the lock directory so that the same
lock file is seen by all instances.

 There are two kinds of locks: write locks and commit locks. Write locks are used when-
ever the index needs to be modified, and tend to be held for longer periods of time
than commit locks. The IndexWriter holds on to the write lock when it’s instantiated
and releases it only when it’s closed. The IndexReader obtains a write lock for three
operations: deleting documents, undeleting documents, and changing the normaliza-
tion factor for a field. Commit locks are used whenever segments are to be merged or
committed. A file called segments names all of the other files in an index. An
IndexReader obtains a commit lock before it reads the segments file. IndexReader
keeps the lock until all the other files in the index have been read. The IndexWriter
also obtains the commit lock when it has to write the segments file. It keeps the lock
until it deletes obsolete index files. Commit locks are accessed more often than write
locks, but for smaller durations, as they’re obtained only when files are opened or
deleted and the small segments file is read or written.

 Listing 11.9 illustrates the use of the isLocked() method in the IndexReader to
check whether the index is currently locked.

 public void illustrateLockingCode(Directory indexDirectory,
 List<Term> deletionTerms,
 List<Document> addDocuments) throws Exception {
 if (!IndexReader.isLocked(indexDirectory)) {
 IndexReader indexReader = IndexReader.open(indexDirectory);
 //do work
 } else {
 //wait
 }
 }

Another alternative is to use an application package such as Solr (see section 11.4.2),
which takes care of a lot of these issues. Having looked at how to incrementally update
the index, next let’s look at how we can access the term frequency vector using
Lucene.

11.2.4 Accessing the term frequency vector

You can access the term vectors associated with each of the fields using the IndexReader.
Note that when creating the Field object as shown in listing 11.3, you need to set the

Listing 11.9 Adding code to check whether the index is locked

325Indexing with Lucene
third argument in the static method for creating a field to Field.TermVector.YES. List-
ing 11.10 shows some sample code for accessing the term frequency vector.

 public void illustrateTermFreqVector(Directory indexDirectory)
 throws Exception {
 IndexReader indexReader = IndexReader.open(indexDirectory);
 for (int i = 0; i < indexReader.numDocs(); i ++) {
 System.out.println("Blog " + i);
 TermFreqVector termFreqVector =
 indexReader.getTermFreqVector(i, "completeText");
 String [] terms = termFreqVector.getTerms();
 int [] freq = termFreqVector.getTermFrequencies();
 for (int j =0 ; j < terms.length; j ++) {
 System.out.println(terms[j] + " " + freq[j]);
 }
 }
 }

The following code

TermFreqVector termFreqVector =
indexReader.getTermFreqVector(i, "completeText");

passes in the index number for a document along with the name of the field for which
the term frequency vector is required. The IndexReader supports another method for
returning all the term frequencies for a document:

TermFreqVector[] getTermFreqVectors(int docNumber)

Finally, let’s look at some ways to manage performance during the indexing process.

11.2.5 Optimizing indexing performance

Methods to improve2 the time required by Lucene to create its index can be broken
down into the following three categories:

■ Memory settings
■ Architecture for indexing
■ Other ways to improve performance

OPTIMIZING MEMORY SETTINGS

When a document is added to an index (addDocument in IndexWriter), Lucene first
stores the document in its memory and then periodically flushes the documents to disk
and merges the segment. setMaxBufferedDocs controls how often the documents in
the memory are flushed to the disk, while setMergeFactor sets how often index seg-
ments are merged together. Both these parameters are by default set to 10. You can con-
trol this number by invoking setMergeFactor() and setMaxBufferedDocs() in the
IndexWriter. More RAM is used for larger values of mergeFactor. Making this number

Listing 11.10 Sample code to access the term frequency vector for a field

2 http://wiki.apache.org/lucene-java/ImproveIndexingSpeed

http://wiki.apache.org/lucene-java/ImproveIndexingSpeed

326 CHAPTER 11 Intelligent search
large helps improve the indexing time, but slows down searching, since searching over
an unoptimized index is slower than searching an optimized index. Making this value
too large may also slow down the indexing process, since merging more indexes at once
may require more frequent access to the disk. As a rule of thumb, large values for this
parameter (greater than 10) are recommended for batch indexing and smaller values
(less than 10) are recommended during incremental indexing.

 Another alternative to flushing the memory based on the number of documents
added to the index is to flush based on the amount of memory being used by Lucene.
For indexing, you want to use as much RAM as you can afford—with the caveat that it
doesn’t help beyond a certain point.3 Listing 11.11 illustrates the process of flushing
the Lucene index based pm the amount of RAM used.

 public void illustrateFlushByRAM(IndexWriter indexWriter,
 List<Document> documents) throws Exception {
 indexWriter.setMaxBufferedDocs(MAX_BUFFER_VERY_LARGE_NUMBER);
 for (Document document: documents) {
 indexWriter.addDocument(document);
 long currentSize = indexWriter.ramSizeInBytes();
 if (currentSize > LUCENE_MAX_RAM) {
 indexWriter.flush();
 }
 }
 }

It’s important to first set the number of maximum documents that will be used before
merging to a large number, to prevent the writer from flushing based on the docu-
ment count.4 Next, the RAM size is checked after each document addition. When the
amount of memory used exceeds the maximum RAM for Lucene, invoking the
flush() method flushes the changes to disk.

 To avoid the problem of very large files causing the indexing to run out of mem-
ory, Lucene by default indexes only the first 10,000 terms for a document. You can
change this by setting setMaxFieldLength in the IndexWriter. Documents with large
values for this parameter will require more memory.
INDEXING ARCHITECTURE

Here are some tips for optimizing indexing performance:

■ In memory indexing, using RAMDirectory is much faster than disk indexing
using FSDirectory. To take advantage of this, create a RAMDirectory-based
index and periodically flush the index to disk using the FSDirectory index’s
addIndexes() method.

■ To speed up the process of adding documents to the index, it may be helpful to
use multiple threads to add documents. This approach is especially helpful

3 See discussion http://www.gossamer-threads.com/lists/lucene/java-dev/51041.

Listing 11.11 Illustrate flushing by RAM

4 See discussion http://issues.apache.org/jira/browse/LUCENE-845.

Check RAM
used after
every additionFlush RAM

when it exceeds
maximum

Set max to large value

http://www.gossamer-threads.com/lists/lucene/java-dev/51041
http://issues.apache.org/jira/browse/LUCENE-845

327Searching with Lucene
when it may take time to create a Document instance and when using hardware
that can effectively parallelize multiple threads. Note that a part of the addDoc-
ument() method is synchronized in the IndexWriter.

■ For indexes with large number of documents, you can split the index into n
instances created on separate machines and then merge the indexes into one
index using the addIndexesNoOptimize method.

■ Use a local file system rather than a remote file system.

OTHER WAYS TO OPTIMIZE

Here are some way to optimize indexing time:

■ Version 2.3 of Lucene exposes methods that allow you to set the value of a
Field, enabling it to be reused across documents. It’s efficient to reuse Docu-
ment and Field instances. To do this, create a single Document instance. Add to
it multiple Field instances, but reuse the Field instances across multiple docu-
ment additions. You obviously can’t reuse the same Field instance within a doc-
ument until the document has been added to the index, but you can reuse
Field instances across documents.

■ Make the analyzer reuse Token instances, thus avoiding unnecessary object
creation.

■ In Lucene 2.3, a Token can represent its text as a character array, avoiding the
creation of String instances. By using the char [] API along with reusing
Token instances, the creation of new objects can be avoided, which helps
improve performance.

■ Select the right analyzer for the kind of text being indexed. For example, index-
ing time increases if you use a stemmer, such as PorterStemmer, or if the ana-
lyzer is sophisticated enough to detect phrases or applies additional heuristics.

So far, we’ve looked in detail at how to create an index using Lucene. Next, we take a
more detailed look at searching through this index.

11.3 Searching with Lucene
In section 11.3, we worked through a simple example that demonstrated how the
Lucene index can be searched using a QueryParser. In this section, we take a more
detailed look at searching.

 In this section, we look at how Lucene does its scoring, the various query parsers avail-
able, how to incorporate sorting, querying on multiple fields, filtering results, searching
across multiple indexes, using a HitCollector, and optimizing search performance.

11.3.1 Understanding Lucene scoring

At the heart of Lucene scoring is the vector-space model representation of text (see
section 2.2.4). There is a term-vector representation associated with each field of a
document. You may recall from our discussions in sections 2.2.4 and 8.2 that the
weight associated with each term in the term vector is the product of two terms—the

328 CHAPTER 11 Intelligent search
term frequency in the document and the inverse document frequency associated with
the term across all documents. For comparison purposes, we also normalize the term
vector so that shorter documents aren’t penalized. Lucene uses a similar approach,
where in addition to the two terms, there’s a third term based on how the document
and field have been boosted—we call this the boost value. Within Lucene, it’s possible
to boost the value associated with a field and a document; see the setBoost() method
in Field and Document. By default, the boost value associated with the field and docu-
ment is 1.0. The final field boost value used by Lucene is the product of the boost val-
ues for the field and the document. Boosting fields and documents is a useful method
for emphasizing certain documents or fields, depending on the business logic for
your domain. For example, you may want to emphasis documents that are newer than
historical ones, or documents written by users who have a higher authority (more well-
known) within your application.

 Given a query, which itself is converted into a normalized term vector, documents
that are found to be most similar using the dot product of the vectors are returned.
Lucene further multiplies the dot product for a document with a term that’s propor-
tional to the number of matching terms in the document. For example, for a three-
term query, this factor will be larger for a document that has two of the queried terms
than a document that has one of the query terms.

 More formally, using the nomenclature used by Lucene, the Similarity5 class out-
lines the score that’s computed between a document d for a given query q:

Note that the summation is in essence taking a dot product. Table 11.1 contains an
explanation of the various terms used in scoring.

The DefaultSimilarity class provides a default implementation for Lucene’s similar-
ity computation, as shown in Figure 11.6. You can extend this class if you want to over-
ride the computation of any of the terms.

5 http://lucene.zones.apache.org:8080/hudson/job/Lucene-Nightly/javadoc/org/apache/lucene/search/
Similarity.html

Table 11.1 Explanation of terms used for computing the relevance of a query to a document

Term Description

Score(q,d) Relevance of query q to a document d

tf(t in d) Term frequency of term t in the document

Idf(t) Inverse document frequency of term t across all documents

Boost(t field in d) Boost for the field—product of field and document boost factors

Norm(t,d) Normalization factor for term t in the document

Coord(q,d) Score factor based on the number of query terms found in document d

Norm(q) Normalization factor for the query

Score q d,() coord q d,() norm q()()• tf t in• d•() idf t()() boost t field in d•••() norm t d,()()•••

t in q••
∑=

http://lucene.zones.apache.org:8080/hudson/job/Lucene-Nightly/javadoc/org/apache/lucene/search/Similarity.html
http://lucene.zones.apache.org:8080/hudson/job/Lucene-Nightly/javadoc/org/apache/lucene/search/Similarity.html

329Searching with Lucene
The IndexSearcher class has a method that returns an Explanation object for a
Weight and a particular document. The Weight object is created from a Query
(query.weight(Searcher)). The Explanation object contains details about the scor-
ing; listing 11.12 shows a sample explanation provided for the query term collective
intelligence, using the code as in listing 11.4 for searching through blog entries.

Link permanente a Collective Intelligence SocialKnowledge
Collective Intelligence Pubblicato da Rosario Sica su
Novembre 18, 2007 [IMG David Thorburn]Segna
0.64706594 = (MATCH) sum of:
 0.24803483 = (MATCH) weight(completeText:collective in 9), product of:
 0.6191303 = queryWeight(completeText:collective), product of:
 1.5108256 = idf(docFreq=5)
 0.409796 = queryNorm
 0.40061814 = (MATCH) fieldWeight(completeText:collective in 9),
product of:
 1.4142135 = tf(termFreq(completeText:collective)=2)
 1.5108256 = idf(docFreq=5)
 0.1875 = fieldNorm(field=completeText, doc=9)
 0.3990311 = (MATCH) weight(completeText:intelligence in 9), product of:
 0.7852883 = queryWeight(completeText:intelligence), product of:
 1.9162908 = idf(docFreq=3)
 0.409796 = queryNorm
 0.5081333 = (MATCH) fieldWeight(completeText:intelligence in 9),
product of:
 1.4142135 = tf(termFreq(completeText:intelligence)=2)
 1.9162908 = idf(docFreq=3)
 0.1875 = fieldNorm(field=completeText, doc=9)

Using the code in listing 11.4, first a Weight instance is created:

 Weight weight = query.weight(indexSearcher);

Next, while iterating over all result sets, an Explanation object is created:

 Iterator iterator = hits.iterator();
 while (iterator.hasNext()) {
 Hit hit = (Hit) iterator.next();

Listing 11.12 Sample explanation of Lucene scoring

Figure 11.6 The default
implementation for the
Similarity class

330 CHAPTER 11 Intelligent search
 Document document = hit.getDocument();
 System.out.println(document.get("completeText"));
 Explanation explanation = indexSearcher.explain(weight,
 hit.getId());
 System.out.println(explanation.toString());
 }

Next, let’s look at how the query object is composed in Lucene.

11.3.2 Querying Lucene

In listing 11.4, we illustrated the use of a QueryParser to create a Query instance by pars-
ing the query string. Lucene provides a family of Query classes, as shown in figure 11.7,
which allow you to construct a Query instance based on the requirements.

Table 11.2 contains a brief description for queries shown in figure 11.7. Next, let’s
work through an example that combines a few of these queries, to illustrate how they
can be used.

Table 11.2 Description of the query classes

Query class name Description

Query Abstract base class for all queries

TermQuery A query that matches a document containing a term

PhraseQuery A query that matches documents containing a particular sequence of terms

PrefixQuery Prefix search query

BooleanQuery A query that matches documents matching Boolean combinations of other queries

RangeQuery A query that matches documents within an exclusive range

SpanQuery Base class for span-based queries

MultiTermQuery A generalized version of PhraseQuery, with an added method add(Term[])

Figure 11.7 Query
classes available in Lucene

331Searching with Lucene
Let’s extend our example in section 11.1.3, where we wanted to search for blog
entries that have the phrase collective intelligence as well as a term that begins with web*.
Listing 11.13 shows the code for this query.

 public void illustrateQueryCombination(Directory indexDirectory)
 throws Exception {
 IndexSearcher indexSearcher = new IndexSearcher(indexDirectory);
 PhraseQuery phraseQuery = new PhraseQuery();
 phraseQuery.add(new Term("completeText","collective"));
 phraseQuery.add(new Term("completeText","intelligence"));
 phraseQuery.setSlop(1);

 PrefixQuery prefixQuery = new PrefixQuery(
 new Term("completeText","web"));

 BooleanQuery booleanQuery = new BooleanQuery();
 booleanQuery.add(phraseQuery, BooleanClause.Occur.MUST);
 booleanQuery.add(prefixQuery, BooleanClause.Occur.MUST);
 System.out.println(booleanQuery.toString());

 Hits hits = indexSearcher.search(booleanQuery);
 }

We first create an instance of the PhraseQuery and add the terms collective and intelli-
gence. Each phrase query has a parameter called slop. Slop by default is set to 0, which
enables only exact phrase matches. When the slop value is greater than 0, the phrase
query works like a within or near operator. The slop is the number of moves
required to convert the terms of interest into the query term. For example, if we’re
interested in the query collective intelligence and we come across a phrase collective xxxx
intelligence, the slop associated with this phrase match is 1, since one term
—xxx—needs to be moved. The slop associated with the phrase intelligence collective is
2, since the term intelligence needs to be moved two positions to the right. Lucene
matches exact matches higher than sloppy matches.

 For the preceding Boolean query, invoking the toString() method prints out the
following Lucene query:

 +completeText:“collective intelligence”~1 +completeText:web*

Next, let’s look at how search results can be sorted using Lucene.

11.3.3 Sorting search results

In a typical search application, the user types in a query and the application returns a
list of items sorted in order of relevance to the query. There may be a requirement in

WildCardQuery Wildcard search query

FuzzyQuery Fuzzy search query

Listing 11.13 Example code showing the use of various Query classes

Table 11.2 Description of the query classes (continued)

Query class name Description

Adding
phrase
termsSetting slop

for terms

Creating prefix query
Combining queries

332 CHAPTER 11 Intelligent search
the application to return the result set sorted in a different order. For example, the
requirement may be to show the top 100 results sorted by the name of the author, or the
date it was created. One naïve way of implementing this feature would be to query
Lucene, retrieve all the results, and then sort the results in memory. There are a couple
of problems with this approach, both related to performance and scalability. First, we
need to retrieve all the results into memory and sort them. Retrieving all items consumes
valuable time and computing resources. The second problem is that all the items are
retrieved even though only a subset of the results will eventually be shown in the appli-
cation. For example, the second page of results may just need to show items 11 to 20 in
the result list. Fortunately, Lucene has built-in support for sorting the results sets, which
we briefly review in this section.

 The Sort class in Lucene encapsulates the sort criteria. Searcher has a number of
overloaded search methods that, in addition to the query, also accept Sort as an input,
and as we see in section 11.3.5, a Filter for filtering results. The Sort class has two
static constants: Sort.INDEXORDER, which sorts the results based on the index order,
and Sort.RELEVANCE, which sorts the results based on relevance to the query. Fields
used for sorting must contain a single term. The term value indicates the document’s
relative position in the sort order. The field needs to be indexed, but not tokenized, and
there’s no need to store the field. Lucene supports three data types for sorting fields:
String, Integer, and Float. Integers and Floats are sorted from low to high. The sort
order can be reversed by creating the Sort instance using either the constructor:

public Sort(String field, boolean reverse)

or the setSort() method:

setSort(String field, boolean reverse)

The Sort object is thread safe and can be reused by using the setSort() method.
 In listing 11.3, we created a field called “author”. Let’s use this field for sorting the

results:

 addField(document,"author",blogEntry.getAuthor(), Field.Store.NO,
 Field.Index.UN_TOKENIZED , Field.TermVector.YES);

Listing 11.14 shows the implementation for the sorting example using the "author"
field.

 public void illustrateSorting(Directory indexDirectory)
 throws Exception {
 IndexSearcher indexSearcher = new IndexSearcher(indexDirectory);
 Sort sort = new Sort("author");
 Query query = new TermQuery(
 new Term("completeText","intelligence"));
 Hits hits =
 indexSearcher.search(query, sort);
 Iterator iterator = hits.iterator();
 while (iterator.hasNext()) {

Listing 11.14 Sorting example

Create Sort object specifying field for sorting

Create query
specifying
field for
searching

Search using
query and
sort objects

333Searching with Lucene
 Hit hit = (Hit) iterator.next();
 Document document = hit.getDocument();
 System.out.println("Author = " + document.get("author"));
 }
 }

In the case of two documents that have the same values in the Sort field, the docu-
ment number is used for displaying the items. You can also create a multiple field
Sort by using the SortField class. For example, the following code first sorts by the
author field, in reverse alphabetical order, followed by document relevance to the
query, and lastly by using the document index number:

 SortField [] sortFields = {new SortField("author", false),
 SortField.FIELD_SCORE, SortField.FIELD_DOC};
 Sort multiFieldSort = new Sort(sortFields);

So far we’ve been dealing with searching across a single field. Let’s look next at how
we can query across multiple fields.

11.3.4 Querying on multiple fields

In listing 11.3, we created a “completeText” field that concatenated text from the
title and excerpt fields of the blog entries. In this section, we illustrate how you can
search across multiple fields using the MultiFieldQueryParser, which extends
FieldQueryParser as shown in figure 11.2.

 Let’s continue with our example from section 11.1.3. We’re interested in searching
across three fields—"name", "title", and "excerpt". For this, we first create a
String array:

String [] fields = {"name", "title", "excerpt"};

Next, a new instance of the MultiFieldQueryParser is created using the constructor:

new MultiFieldQueryParser(fields, getAnalyzer());

Lucene will search for terms using the OR operator—the query needs to match any
one of the three fields. Next, let’s look at how we can query multiple fields using dif-
ferent matching conditions. Listing 11.15 illustrates how a multifield query can be
composed, specifying that the match should occur in the “name” field, and the
“title” field, and shouldn’t occur in the “excerpt” field.

 public Query getMultiFieldAndQuery(String query) throws Exception {
 String [] fields =
 {"name", "title", "excerpt"};
 BooleanClause.Occur[] flags = {
 BooleanClause.Occur.SHOULD,
 BooleanClause.Occur.MUST,
 BooleanClause.Occur.MUST_NOT};
 return MultiFieldQueryParser.parse(query, fields,
 flags, getAnalyzer());
 }

Listing 11.15 MultiFieldQueryParser example

Create
array with
field names

Create array
with conditions
for combining

Invoke parse
method

334 CHAPTER 11 Intelligent search
This example constructs the following query for Lucene:

(name:query) +(title:query) -(excerpt:query)

Next, let’s look at how we can use Filters for filtering out results using Lucene.

11.3.5 Filtering

Lots of times, you may need to constrain
your search to a subset of available docu-
ments. For example, in an SaaS applica-
tion, where there are multiple domains or
companies supported by the same soft-
ware and hardware instance, you need
to search through documents only within
the domain of the user. As shown in fig-
ure 11.8, there are five Filter classes avail-
able in Lucene.

 Table 11.3 contains a brief description of the various filters that are available in
Lucene.

Next, let’s look at some code that illustrates how to create a filter and invoke the search
method using the filter. Listing 11.16 shows the code for creating a RangeFilter using
the "modifiedDate" field. Note that the date the document was modified is converted
into a String representation using yyyymmdd format.

 public void illustrateFilterSearch(IndexSearcher indexSearcher,
 Query query, Sort sort) throws Exception {
 Filter rangeFilter = new RangeFilter(
 "modifiedDate", "20080101",
 "20080131", true, true);

Table 11.3 Description of the filter classes

Class Description

Filter Abstract base class for all filters. Provides a mechanism to restrict the
search to a subset of the index.

CachingWrapperFilter Wraps another filter’s results and caches it. The intent is to allow filters
to simply filter and then add caching using this filter.

QueryFilter Constrains search results to only those that match the required query.
It also caches the result so that searches on the same index using this
filter are much faster.

RangeFilter Restricts the search results to a range of values. This is similar to a
RangeQuery.

PrefixFilter Restricts the search results to those that match the prefix. This is simi-
lar to a PrefixQuery.

Listing 11.16 Filtering the results

Create instance
of RangeFilter

Figure 11.8 Filters available in Lucene

335Searching with Lucene
 CachingWrapperFilter cachedFilter =
 new CachingWrapperFilter(rangeFilter);
 Hits hits = indexSearcher.search(query, cachedFilter, sort);
 }

The constructor for a RangeFilter takes five parameters. First is the name of the field
to which the filter has to be applied. Next are the lower and the upper term for the
range, followed by two Boolean flags indicating whether to include the lower and
upper values. One of the advantages of using Filters is the caching of the results. It’s
easy enough to wrap the RangeFilter instance using the CachingWrapperFilter. As
long as the same IndexReader or IndexSearcher instance is used, Lucene will use the
cached results after the first query is made, which populates the cache.

11.3.6 Searching multiple indexes

In figure 11.2, you may have noticed two Searcher classes, MultiSearcher and Par-
allelMultiSearcher. These classes are useful if you need to search across multiple
indexes. It’s common practice to partition your Lucene indexes, once they become
large. Both MultiSearcher and ParallelMultiSearcher, which extends Multi-
Searcher, can search across multiple index instances and present search results com-
bined together as if the results were obtained from searching a single index. List-
ing 11.17 shows the code for creating and searching using the MultiSearcher and
ParallelMultiSearcher classes.

 public void illustrateMultipleIndexSearchers(Directory index1,
 Directory index2, Query query, Filter filter) throws Exception {
 IndexSearcher indexSearcher1 = new IndexSearcher(index1);
 IndexSearcher indexSearcher2 = new IndexSearcher(index2);
 Searchable [] searchables = {indexSearcher1, indexSearcher2};

 Searcher searcher = new MultiSearcher(searchables);
 Searcher parallelSearcher = new ParallelMultiSearcher(searchables);

 Hits hits = searcher.search(query, filter);
 //use the hits
 indexSearcher1.close();
 indexSearcher2.close();
 }

ParallelMultiSearcher parallelizes the search and filter operations across each
index by using a separate thread for each Searchable.

 Next, let’s look at how we can efficiently iterate through a large number of
documents.

11.3.7 Using a HitCollector

So far in this chapter, we’ve been using Hits to iterate over the search results. Hits has
been optimized for a specific use case. You should never use Hits for anything other
than retrieving a page of results, or around 10–30 instances. Hits caches documents,
normalizes the scores (between 0 and 1), and stores IDs associated with the document

Listing 11.17 Searching across multiple instances

Wrap RangeFilter in
CachingWrapperFilter

Create array of
Searchable instances

Constructor takes array of
Searchable instances

336 CHAPTER 11 Intelligent search
using the Hit class. If you retrieve a Document from Hit past the first 100 results, a new
search will be issued by Lucene to grab double the required Hit instances. This pro-
cess is repeated every time the Hit instance goes beyond the existing cache. If you
need to iterate over all the results, a HitCollector is a better choice. Note that the
scores passed to the HitCollector aren’t normalized.

 In this section, we briefly review some of the HitCollector classes available in
Lucene and shown in figure 11.9. This will be followed by writing our own HitCollec-
tor for the blog searching example we introduced in section 11.1.

Table 11.4 contains a brief description for the list of classes related to a HitCollector.
HitCollector is an abstract base class that has one abstract method that each HitCol-
lector object needs to implement:

public abstract void collect(int doc,float score)

In a search, this method is called once for every matching document, with the follow-
ing arguments: its document number and raw score. Note that this method is called in
an inner search loop. For optimal performance, a HitCollector shouldn’t call
Searcher.doc(int) or IndexReader.document(int) on every document number
encountered. The TopDocCollector contains TopDocs, which has methods to return
the total number of hits along with an array of ScoreDoc instances. Each ScoreDoc has
the document number, along with the unnormalized score for the document. Top-
FieldDocs extends TopDocs and contains the list of fields that were used for sorting.

Table 11.4 Description of the HitCollector-related classes

Class Description

HitCollector Base abstract class for all HitCollector classes. It has one
primary abstract method: collect().

TopDocCollector HitCollector implementation that collects the specified number of
top documents. It has a method that returns the TopDocs.

Figure 11.9 HitCollector-related classes

337Searching with Lucene
Next, let’s look at a simple example to demonstrate how the HitCollector-related
APIs can be used. This is shown in listing 11.18.

 public void illustrateTopDocs(Directory indexDirectory, Query query,
 int maxNumHits) throws Exception {
 IndexSearcher indexSearcher =
 new IndexSearcher(indexDirectory);
 TopDocCollector hitCollector =
 new TopDocCollector(maxNumHits);
 indexSearcher.search(query, hitCollector);
 TopDocs topDocs = hitCollector.topDocs();
 System.out.println("Total number results=" + topDocs.totalHits);
 for (ScoreDoc scoreDoc: topDocs.scoreDocs) {
 Document document = indexSearcher.doc(scoreDoc.doc);
 System.out.println(document.get("completeText"));
 }
 indexSearcher.close();
 }

In this example, we first create an instance of the TopDocCollector, specifying the
maximum number of documents that need to be collected. We invoke a different vari-
ant of the search method for the Searcher, which takes in a HitCollector. We then
iterate over the results, retrieving the Document instance using the ScoreDoc.

 Next, it’s helpful to write a custom HitCollector for our example. Listing 11.19
contains the code for RetrievedBlogHitCollector, which is useful for collecting
RetrievedBlogEntry instances obtained from searching.

package com.alag.ci.search.lucene;

import java.io.IOException;
import java.util.*;

import org.apache.lucene.document.Document;
import org.apache.lucene.search.*;

import com.alag.ci.blog.search.RetrievedBlogEntry;
import com.alag.ci.blog.search.impl.RetrievedBlogEntryImpl;

TopDocs Contains the number of results returned and an array of ScoreDoc,
one for each returned document.

ScoreDoc Bean class containing the document number and its score.

TopFieldDocCollector HitCollector that returns the top sorted documents, returning
them as TopFieldDocs.

TopFieldDocs Extends TopDocs. Also contains the list of fields that were used for
the sort.

Listing 11.18 Example using TopDocCollector

Listing 11.19 Implementing a custom HitCollector

Table 11.4 Description of the HitCollector-related classes (continued)

Class Description

Create instance of
TopDocCollector

Query searcher
using HitCollector

Retrieve document
from ScoreDoc

338 CHAPTER 11 Intelligent search
public class RetrievedBlogHitCollector extends HitCollector{
 private List<RetrievedBlogEntry> blogs = null;
 private Searcher searcher = null;

 public RetrievedBlogHitCollector(Searcher searcher) {
 this.searcher = searcher;
 this.blogs = new ArrayList<RetrievedBlogEntry>();
 }

 public void collect(int docNum, float score) {
 try {
 Document document = this.searcher.doc(docNum);
 RetrievedBlogEntryImpl blogEntry =
 new RetrievedBlogEntryImpl();
 blogEntry.setAuthor(document.get("author"));
 blogEntry.setTitle(document.get("title"));
 blogEntry.setUrl(document.get("url"));
 this.blogs.add(blogEntry);
 } catch (IOException e) {
 //ignored
 }
 }

 public List<RetrievedBlogEntry> getBlogEntries() {
 return this.blogs;
 }
}

In our example, we create an instance of RetrievedBlogEntryImpl and populate it
with the attributes that will be displayed in the UI. The list of resulting RetrievedBlog-
Entry instances can be obtained by invoking the getBlogEntries() method.

 Before we end this section, it’s useful to look at some tips for improving search
performance.

11.3.8 Optimizing search performance

In section 11.2.5, we briefly reviewed some ways to make Lucene indexing faster. In
this section, we briefly review some ways to make searching using Lucene faster6:

■ If the amount of available memory exceeds the amount of memory required
to hold the Lucene index in memory, the complete index can be read into
memory using the RAMDirectory. This will allow the SearchIndexer to search
through an in-memory index, which is much faster than the index being
stored on the disk. This may be particularly useful for creating auto-complete
services—services that provide a list of options based on a few characters typed
by a user.

■ Use adequate RAM and avoid remote file systems.
■ Share a single instance of the IndexSearcher. Avoid reopening the Index-

Searcher, which can be slow for large indexes.

6 Refer to http://wiki.apache.org/lucene-java/ImproveSearchingSpeed.

Collect method
needs to be
implemented

http://wiki.apache.org/lucene-java/ImproveSearchingSpeed

339Useful tools and frameworks
■ Optimized indexes have only one segment to search and can be much faster
than a multi-segment index. If the index doesn’t change much once it’s cre-
ated, it’s worthwhile to optimize the index once it’s built. However, if the index
is being constantly updated, optimizing will likely be too costly, and you should
decrease mergeFactor instead. Optimizing indexes is expensive.

■ Don’t iterate over more hits than necessary. Don’t retrieve term vectors and
fields for documents that won’t be shown on the results page.

At this stage, you should have a good understanding of using Lucene, the process of
creating an index, searching using Lucene, sorting and filtering in Lucene, and using
a HitCollector. With this background, we’re ready to look at some ways to make
searching using Lucene intelligent. Before that, let’s briefly review some tools and
frameworks that may be helpful.

11.4 Useful tools and frameworks
Given the wide popularity and use of Lucene, a number of tools and frameworks have
been built. In chapter 6, we used Nutch, which is an open source crawler built using
Lucene. In section 6.3.4, we also discussed Apache Hadoop, a framework to run appli-
cations that need to process large datasets using commodity hardware in a distributed
platform. In this section, we briefly look at Luke, a useful tool for looking at the
Lucene index, and three other frameworks related to Lucene that you should be
aware of: Solr, Compass, and Hibernate search. Based on your application and need,
you may find it useful to use one of these frameworks.

11.4.1 Luke

Luke is an open source toolkit for browsing and modifying the Lucene index. It was
created by Andrzej Bialecki and is extensible using plug-ins and scripting. Using Luke,
you can get an overview of the documents in the index; you can browse through docu-
ments and see details about their fields and term vectors. There’s also an interface
where you can search and see the results of the search query. You can start Luke using
the Java Web Start link from the Luke home page at http://www.getopt.org/luke/.
Figure 11.10 shows a screenshot of Luke in the document browse mode. You can
browse through the various documents and look at their fields and associated terms
and term vector. If you’re experimenting with different analyzers or building your
own analyzer, it’s helpful to look at the contents of the created index using Luke.

11.4.2 Solr

Solr is an open source enterprise search server built using Lucene that provides sim-
ple XML/HTTP and JSON APIs for access. Solr needs a Java servlet container, such as
Tomcat. It provides features such as hit highlighting, caching, replication, and a web
administration interface.

 Solr began as an in-house project at CNET Networks and was contributed to the
Apache Foundation as a subproject of Lucene in early 2006. In January 2007, Solr
graduated from an incubation period to an official Apache project. Even though it’s a

http://www.getopt.org/luke/

340 CHAPTER 11 Intelligent search
relatively new project, it’s being used extensively by a number of high-traffic sites.7 Fig-
ure 11.11 shows a screenshot of the Solr admin page.

7 http://wiki.apache.org/solr/PublicServers

Figure 11.10 Screenshot of Luke in the Documents tab

Figure 11.11 Screenshot of the Solr admin page

http://wiki.apache.org/solr/PublicServers

341Approaches to intelligent search
11.4.3 Compass

Compass is a Java search engine framework that was built on top of Lucene. It pro-
vides a high level of abstraction. It integrates with both Hibernate and Spring, and
allows you to declaratively map your object domain model to the underlying search
engine and synchronize changes with the data source. Compass also provides a
Lucene JDBC, allowing Lucene to store the search index in the database. Compass is
available using the Apache 2.0 license. Read more about Compass at http://
www.opensymphony.com/compass/.

11.4.4 Hibernate search

Hibernate search solves the problem of mapping a complex object-oriented domain
model to a full-text search-based index. Hibernate search aims to synchronize
changes between the domain objects and the index transparently, and returns
objects in response to a search query. Hibernate is an open source project distrib-
uted under the GNU Lesser General Public License. Read more about Hibernate at
http://www.hibernate.org/410.html.

 In this section, we’ve looked at tools built on top of Lucene. For most applications,
using a framework such as Solr should be adequate, and should expedite adding
search capabilities. Now that we have a good understanding of the basics of search,
let’s look at how we can make our search intelligent.

11.5 Approaches to intelligent search
One of the aims of this chapter is to make search more intelligent. In this section, we
focus on techniques that leverage some of the clustering, classification, and predictive
models that we developed in part 2 of the book. We also look at some of the current
approaches being used by search companies. There are a lot of companies innovating
within the search space.8 While it’s impossible to cover them all, we discuss a few of
the well-known ones.

 In this section, we cover six main approaches to making search more intelligent:

■ Augmenting the document by creating new fields using one or more of the fol-
lowing: clustering, classification, and regression models

■ Clustering the results from a search query to determine clusters of higher-level
concepts

■ Using contextual and user information to boost the search results toward a par-
ticular term vector

■ Creating personal search engines, which search through a subset of sites, where
the list of sites is provided by a community of users; and using social network-
ing, where users can tag sites, and the search engine blocks out irrelevant sites
and selects sites selected by other users

■ Linguistic-based search, where the level of words and their meanings is used
■ Searching through data and looking for relevant correlations

8 http://www.allthingsweb2.com/mtree/SEARCH_2.0/

http://www.opensymphony.com/compass/
http://www.opensymphony.com/compass/
http://www.hibernate.org/410.html
http://www.allthingsweb2.com/mtree/SEARCH_2.0/

342 CHAPTER 11 Intelligent search
For most of them, we also briefly look at how you could apply the same concept in
your application.

11.5.1 Augmenting search with classifiers and predictors

Consider a typical application that uses user-generated comment (UGC). The UGC
could be in many forms; for example, it could be questions and answers asked by
users, images, articles or videos uploaded and shared by the user, or tagged book-
marks created by the user. In most applications, content can be classified into one or
more categories. For example, one possible classification for this book’s content could
be tagging, data collection, web crawling, machine learning, algorithms, search, and
so on. Note that these classifications need not be mutually exclusive—content can
belong to multiple categories. For most applications, it’s either too expensive or just
not possible to manually classify all the content. Most applications like to provide a
“narrow by” feature to the search results. For example, you may want to provide a gen-
eral search feature and then allow the user to subfilter the results based on a subset of
classification topics that she‘s interested in.

 One way to build such functionality is to build a classifier that predicts whether a
given piece of content belongs to a particular category. Here is the recipe for adding
this functionality:

■ Create a classifier for each of the categories. Given a document, each classifier
predicts whether the document belongs to that category.

■ During indexing, add a field, classificationField, to the Lucene Document,
which contains the list of applicable classifiers for that document.

■ During search, create a Filter that narrows the search to appropriate terms in
the classificationField.

Predictive models can be used in a manner similar to classifiers.
 An example of using a classification model to categorize content and use it in

search is Kosmix9: Kosmix, which aims at building a home page for every topic, uses a
categorization engine that automatically categorizes web sites. Figure 11.12 shows a
screenshot of the home page for collective intelligence generated by Kosmix.

11.5.2 Clustering search results

The typical search user rarely goes beyond the second or third page of results and pre-
fers to rephrase the search query based on the initial results. Clustering results, so as
to provide categories of concepts gathered from analyzing the search results, is an
alternative approach to displaying search results. Figure 11.13 shows the results of
clustering using Carrot210 clustering for the query collective intelligence. You can see the
higher-level concepts discovered by clustering the results. The user can then navigate

9 http://www.kosmix.com/.
10 http://project.carrot2.org/index.html

http://www.kosmix.com/
http://project.carrot2.org/index.html

343Approaches to intelligent search
Figure 11.12 Screenshot of the home page for collective intelligence at Kosmix

Figure 11.13 Clustering search results using Carrot2 clustering

344 CHAPTER 11 Intelligent search
to dig deeper into concepts of interest. Clusty11 is a well-known search engine that
applies this principle. Clusty carries out a meta-search across multiple search engines
and then clusters the results.

 Carrot2 is an open source engine that automatically clusters search results. Inte-
gration with Lucene results is fairly straightforward.12 Carrot2 has been successfully
used in a number of commercial applications.

11.5.3 Personalizing results for the user

The main motivation behind this approach is to use any available contextual informa-
tion to modify the search query to make the search more relevant. The contextual
information could be in the form of a term-vector representation for the user’s inter-
ests or profile. Or a click on a tag might modify the search query to add additional
contextual information. An example should help you understand the concept better.
Let’s say that a user makes a general query computers on a site that sells computers.
Now, if there is a profile associated with the user that has information on the kind of
products that the user tends to buy or look at—perhaps whether the user enjoys
expensive products or a particular brand—this additional information can be used to
modify and sort the information that’s retrieved.

11.5.4 Community-based search

Community-based search engines allow users to create custom search engines by
specifying a set of web sites. These sites are either emphasized or are the only web
sites searched. This approach is useful for creating vertically focused search engines.
Google custom search (http://www.google.com/coop/), Eurekster (http://
www.eurekster.com/), and Rollyo (http://rollyo.com/) are a few of the companies
that follow this approach and allow users to create custom search engines. Fig-
ure 11.14 shows a screenshot of a personalized search engine that I created on
Google using the URLs that I obtained running the focused crawler we developed in
chapter 6.

 One way of applying this concept within your application is to allow your users to
tag content within the application. In essence, each tag categorizes the content. You
can allow users to create custom search engines within your application by allowing
them to combine sets of tags. Hence, when a search is carried out within a custom
search engine, only content that has one or more of the required tags is considered
for search results.

11 http://clusty.com
12 http://carrot2.svn.sourceforge.net/viewvc/carrot2/trunk/carrot2/applications/carrot2-demo-api-exam-

ple/src/org/carrot2/apiexample/LuceneExample.java?view=markup

http://www.google.com/coop/
http://www.eurekster.com/
http://www.eurekster.com/
http://rollyo.com/
http://clusty.com
http://carrot2.svn.sourceforge.net/viewvc/carrot2/trunk/carrot2/applications/carrot2-demo-api-example/src/org/carrot2/apiexample/LuceneExample.java?view=markup
http://carrot2.svn.sourceforge.net/viewvc/carrot2/trunk/carrot2/applications/carrot2-demo-api-example/src/org/carrot2/apiexample/LuceneExample.java?view=markup

345Approaches to intelligent search
11.5.5 Linguistic-based search

Natural language–based search engines, such as Hakia (http://www.hakia.com/),
Powerset (http://www.powerset.com/), and Lexee (http://www.lexxe.com/), aim to
go beyond simple text matching by trying to get the content of the query. They look at
the syntactic relationships and try to retrieve pages that are similar based on analyzing
their content.

11.5.6 Data search

On February 29, 2008, Bloomberg.com reported that George Church, a professor of
genetics at Harvard Medical School, plans to spend $1 billion to create a database for
finding new drugs by correlating each person’s personal health history to DNA-related
information. Church, whose research led to the first direct genomic sequencing
method and also helped initiate the Human Genome Project, is backed by Google
and OrbiMed Advisors, LLC. Church plans to decode the DNA of 100,000 people in
the world’s biggest gene sequencing project.

 The entire human genome has more than 3 billion DNA base pairs. Humans
have 24 unique chromosomes and an estimated 20,000–25,000 unique genes. A gene
is a portion of the genomic sequence that encodes proteins—building blocks of cells
and tissues. Variations in genes and other parts of the DNA have been linked to vari-
ous types of diseases. DNA chips or microarrays enable researchers to generate large
amounts of DNA-related data. Computational biology or bioinformatics is an active area
of research that deals with deriving intelligence from biological data. Companies
such as 23andme.com, navigenics.com, and decodeme.com provide a service by

Figure 11.14 Screenshot of a personalized search engine on collective intelligence developed using
Google Custom Search

http://www.hakia.com/
http://www.powerset.com/
http://www.lexxe.com/

346 CHAPTER 11 Intelligent search
which consumers’ DNA is converted into single nucleotide polymorphisms (SNP)
data, with the promise that it can be used to calculate the levels of risks associated
with various diseases.

 These are just some examples of the growing trends in the life sciences area. Data
is being generated at a fast pace within this field. So far in this chapter, we’ve mainly
concentrated on text-based search. However, searching through large amounts of
experimental data, where you normalize the data and use actual experimental values
from the data along with any meta-text or associated annotations to discover new rela-
tionships, is a form of data-based search. Such search engines typically also leverage an
ontology and complex biological relationships to guide their searches. One such com-
pany that I’m associated with is NextBio.13 At NextBio, we leverage all publicly avail-
able life sciences–related data, along with user-contributed data, to provide a platform
for life scientists to discover new relationships, perhaps between genes, diseases, and
treatments. Going back to the original example of Church’s plan to decode the DNA
of 100,000 people, I hope that all that data will be publicly available in the future for
search engines to use and help discover new drugs for diseases.

 Figure 11.15 shows a screenshot from NextBio for the gene TP53. Note that the
search engine has returned lists of diseases, tissues, and treatments that may be
related to this gene.

13 www.nextbio.com. Disclaimer: I’m currently the VP of engineering at NextBio.

Figure 11.15 Screenshot from
NextBio showing the Gene TP53,
along with inferences from
analyzing the data

www.nextbio.com

347Resources
In this section, we’ve looked at six current trends in the area of making search more
intelligent. It is impossible to discuss all the innovation happening in the large number
of new search engines being built. You may want to look at a couple of additional upcom-
ing search engines: Cuil,14 which claims to have a larger index than Google, and
Searchme,15 which has an innovative way of displaying search results. Search is a multi-
billion-dollar business, so expect more innovation in this area in the years to come.

11.6 Summary
Search is the process of retrieving relevant results in response to a query. The process
of searching consists of first creating an inverted index of terms and then searching
through the inverted index. The vector-space model and the term-vector representation
of content are the basis for retrieving relevant documents in response to a search query.

 Lucene provides two main classes, FSDirectory and RAMDirectory, for creating an
index. Content is added to the index using a Document instance. Each Document
instance consists of Field instances, each of which has a name and a String value.
Field objects can be stored in the index for future retrieval, tokenized for search, or
untokenized for sorting, and can have an associated term vector stored with them.
The same analyzer needs to be used for both indexing and searching.

 Searches within Lucene are carried out using an instance of a Searcher and a
Query object. Query instances are created using either a QueryParser or by instantiat-
ing appropriate Query instances. Hits, which is a container for results from a query,
contains access to the resulting documents. It’s more appropriate to use a HitCollec-
tor when you need to traverse through a large number of result documents. Lucene
provides extensive support for sorting and filtering the results.

 Approaches to make search more intelligent include using classification and pre-
diction algorithms to classify content, clustering results to present concepts, creating
personal search engines, leveraging user tagging information to filter results, and
using natural language processing to determine concepts to aid search.

 Now that we have a good understanding of search, in the next chapter, we look at
how we can build a recommendation engine using both collaborative and content-
based analysis.

11.7 Resources
 Apache Lucene Index File Format. http://lucene.apache.org/java/docs/fileformats.html
 Apache Lucene Scoring. http://lucene.apache.org/java/docs/scoring.html
 “The Best of Web 2.0 Searching and Search Engine.” http://www.allthingsweb2.com/mtree/

SEARCH_2.0/
 Carrot and Lucene. http://project.carrot2.org/faq.html#lucene-integration
 Carrot Clustering. http://project.carrot2.org/
 Compass. http://www.opensymphony.com/compass/content/about.html
 Delecretaz, Bertrand. “Solr: Indexing XML with Lucene and REST.” xml.com, August 2006.

http://www.xml.com/pub/a/2006/08/09/solr-indexing-xml-with-lucene-andrest.html

14 http://www.cuil.com/
15 http://www.searchme.com/

http://lucene.apache.org/java/docs/fileformats.html
http://lucene.apache.org/java/docs/scoring.html
http://www.allthingsweb2.com/mtree/SEARCH_2.0/
http://www.allthingsweb2.com/mtree/SEARCH_2.0/
http://project.carrot2.org/faq.html#lucene-integration
http://project.carrot2.org/
http://www.opensymphony.com/compass/content/about.html
http://www.xml.com/pub/a/2006/08/09/solr-indexing-xml-with-lucene-andrest.html
http://www.cuil.com/
http://www.searchme.com/

348 CHAPTER 11 Intelligent search
 Ezzy, Ebharim. Search 2.0 Vs Traditional Search. 2006. http://www.readwriteweb.com/
archives/search_20_vs_tr.php

 Fleisher, Peter. “Google’s search policy puts the user in charge.” Financial Times, May 2007.
http://www.ft.com/cms/s/2/560c6a06-0a63-11dc-93ae-000b5df10621.html

 Google Custom Search. http://www.google.com/coop/
 Hatcher, Otis Gospodnetic and Erik. Lucene in Action. 2004. Manning Publications.
 Hibernate Search Apache Lucene Integration. http://www.hibernate.org/hib_docs/search/

reference/en/html/index.html
 Hibernate Search. http://www.hibernate.org/410.html
 Hotchkiss, Gord. “The Pros & Cons Of Personalized Search.” Search Engine Land, March

2007. http://searchengineland.com/070309-081324.php
 Hunter, David J., Muin J. Khoury, and Jeffrey M. Drazen. “Letting the genome out of the

bottle—will we get our wish?” New England Journal of Medicine. 2008 Jan 10;358(2):105-7
http://content.nejm.org/cgi/content/full/358/2/105

 Improve Indexing Speed. Lucene Wiki. http://wiki.apache.org/lucene-java/
ImproveIndexingSpeed

 Lauerman, John. “Google Backs Harvard Scientist’s 100,000-Genome Quest.” February 29,
2008. http://www.bloomberg.com/apps/news?pid=newsarchive&sid=abC4lpqJ0TZs

 Lucene FAQ. http://wiki.apache.org/lucene-java/LuceneFAQ
 Lucene Resources. http://wiki.apache.org/lucene-java/Resources
 Luke. http://www.getopt.org/luke/
 Newcomb, Kevin. “A Look at the Next Generation of Search?” February, 2007. http://

searchenginewatch.com/showPage.html?page=3624837
 Nielsen online. “Nielsen Announces February US Search Share Rankings.” March 2--8.

http://www.nielsen-netratings.com/pr/pr_080326.pdf
 Owens, Steven J. Lucene Tutorial. http://www.darksleep.com/lucene/
 Rich Il’s Conference Trip. http://ils501.blogspot.com/
 Smart, John Ferguson. Integrate advanced search functionalities into your apps. Java-

World.com. 2006. http://www.javaworld.com/javaworld/jw-09-2006/jw-0925-lucene.html
 Solr. http://lucene.apache.org/solr/
 “Updating an index.” http://wiki.apache.org/lucene-java/UpdatingAnIndex

http://www.readwriteweb.com/archives/search_20_vs_tr.php
http://www.readwriteweb.com/archives/search_20_vs_tr.php
http://www.ft.com/cms/s/2/560c6a06-0a63-11dc-93ae-000b5df10621.html
http://www.google.com/coop/
http://www.hibernate.org/hib_docs/search/reference/en/html/index.html
http://www.hibernate.org/hib_docs/search/reference/en/html/index.html
http://www.hibernate.org/410.html
http://searchengineland.com/070309-081324.php
http://content.nejm.org/cgi/content/full/358/2/105
http://wiki.apache.org/lucene-java/ImproveIndexingSpeed
http://wiki.apache.org/lucene-java/ImproveIndexingSpeed
http://www.bloomberg.com/apps/news?pid=newsarchive&sid=abC4lpqJ0TZs
http://wiki.apache.org/lucene-java/LuceneFAQ
http://wiki.apache.org/lucene-java/Resources
http://www.getopt.org/luke/
http://searchenginewatch.com/showPage.html?page=3624837
http://searchenginewatch.com/showPage.html?page=3624837
http://www.nielsen-netratings.com/pr/pr_080326.pdf
http://www.darksleep.com/lucene/
http://ils501.blogspot.com/
http://www.javaworld.com/javaworld/jw-09-2006/jw-0925-lucene.html
http://lucene.apache.org/solr/
http://wiki.apache.org/lucene-java/UpdatingAnIndex

Building a
 recommendation engine
In recent years, increasing amount of user interaction has provided applications
with a large amount of information that can be converted into intelligence. This
interaction may be in the form of rating an item, writing a blog entry, tagging an
item, connecting with other users, or sharing items of interest with others. This
increased interaction has led to the problem of information overload. What we
need is a system that can recommend or present items to the user based on the
user’s interests and interactions. This is where personalization and recommenda-
tion engines come in.

 Recommendation engines aim to show items of interest to a user. Recommen-
dation engines in essence are matching engines that take into account the con-
text of where the items are being shown and to whom they’re being shown.

This chapter covers
■ Fundamentals for building a recommendation engine
■ A content-based approach for building a recommendation engine
■ A collaborative-based approach for building a recommendation engine
■ Real-world case studies of Amazon, Google News, and Netflix
349

350 CHAPTER 12 Building a recommendation engine
Recommendation engines are one of the best ways of utilizing collective intelligence
in your application.

 Netflix, the world’s largest online movie rental service, provides a good proof-
point of how important recommendation engines are to commerce. Netflix offers
personalized recommendations to over 8.4 million subscribers with a catalog of
more than 100,000 movie titles.1 Netflix’s recommendation engine is very effective,
with about 60 percent of Netflix members selecting their movies based on movie rec-
ommendations that have been tailored to their individual tastes. Later in this chap-
ter (see section 12.4.3), we briefly review the approach Netflix took to build their
recommendation system.

 In this chapter, we look at how to develop a recommendation engine. To do this,
we use most of the concepts that we’ve developed in previous chapters. We begin with
a brief introduction to various concepts related to building a recommendation
engine. Next, continuing with our running example of using blog entries from Tech-
norati, we build a recommendation engine using a content-analysis approach. For
this, we first leverage Lucene and then use the text analytics framework developed in
chapter 8. Next, we look at the various collaborative approaches to building recom-
mendation engines. This will be followed by reviewing a few approaches—Amazon,
Google News, and Netflix—to building recommendation engines in the industry. At
the end of this chapter, you should be comfortable building a recommendation
engine using both content-based and collaborative approaches.

12.1 Recommendation engine fundamentals
One of the best-known examples of a recommendation engine is Amazon.com. Ama-
zon provides personalized recommendations in a number of ways, one of which is
shown in figure 12.1. Figure 12.1 shows the recommendations provided by Amazon
when you look at the book Lucene in Action by Gospodnetic and Hatcher. Note that
they recommend a number of books under the heading “Customers Who Bought

1 As of September 2008; see http://www.netflix.com/MediaCenter?id=5379#about

Figure 12.1 An example of the output of a recommendation engine at Amazon.com

http://www.netflix.com/MediaCenter?id=5379#about

351Recommendation engine fundamentals
This Item Also Bought.” This is an example of an item-based recommendation, where
items related to a particular item are being recommended.

 In this section, we introduce basic concepts related to building a recommendation
engine. Let’s begin by taking a deeper look at the many forms of recommendation
engines.

12.1.1 Introducing the recommendation engine

As shown in figure 12.2, a recommendation engine takes the following four inputs to
make a recommendation to a user:

■ The user’s profile — age, gender, geographical location, net worth, and so on
■ Information about the various items available — content associated with the item
■ The interactions of the users — ratings, tagging, bookmarking, saving, emailing,

browsing content
■ The context of where the items will be shown — the subcategory of items that are to be

considered
As we mentioned in section 2.2.1, a user
is also an item. In social networking,
other users are recommended based on
the context of the application.

 One of the easiest forms of a recom-
mendation list is the “Top Item List,”
where items that have been viewed,
tagged, bought, or saved the most in a
period of time are presented to the user.
While promoting top products is useful,
what we really want is to create a personalized list of recommendations for users.

 Recommendation engines can help build the following types of features in your
application:

■ Users who acted on this item also took action on these other items, where the
acted on could be watched, purchased, viewed, saved, emailed, bookmarked,
added to favorites, shared, created, and so on

■ Other users you may be interested in
■ Items related to this item
■ Recommended items

Here are some concrete examples of these use cases:

■ Users who watched this video and also watched these other videos
■ New items related to this particular article
■ Users who are similar to you
■ Products that you may be interested in

In recommendation systems, there’s always a conflict between exploitation and explora-
tion. Exploitation is the process of recommending items that fall into the user’s sweet

Recommendation
System

User Interaction

User Profile

Item Information
Context

Recommended
Items

Figure 12.2 The inputs and outputs
of a recommendation engine

352 CHAPTER 12 Building a recommendation engine
spot, based on things you already know about the user. Exploration is being presented
with items that don’t fall into the user’s sweet spot, with the aim that you may find a
new sweet spot that can be exploited later. Greedy recommenders, with little explora-
tion, will recommend items that are similar to the ones that the user has rated in the
past. In essence, the user will never be presented with items that are outside their cur-
rent spot. A common approach to facilitating exploration is to not necessarily recom-
mend just the top n items, but to add a few items selected at random from candidate
items. It’s desirable to build in some diversity in the recommendation set provided to
the user.

 Next, let’s look at the two basic approaches to building recommendation engines.

12.1.2 Item-based and user-based analysis

There are two main approaches to
building recommendation systems,
based on whether the system searches
for related items or related users.

 In item-based analysis, items
related to a particular item are deter-
mined. When a user likes a particular
item, items related to that item are rec-
ommended. As shown in figure 12.3,
if items A and C are highly similar and
a user likes item A, then item C is
recommended to the user. You may recall our discussion in section 2.2.3, where we
looked at two approaches to finding similar items. First was content-based analysis,
where the term vector associated with the content was used. The second was collabor-
ative filtering, where user actions such as rating, bookmarking, and so forth are used to
find similar items.

 In user-based analysis, users similar to the user are first determined. As shown in
figure 12.4, if a user likes item A, then the same item can be recommended to other
users who are similar to user A. Similar users can be
obtained by using profile-based information about
the user—for example cluster the users based on
their attributes, such as age, gender, geographic
location, net worth, and so on. Alternatively, you
can find similar users using a collaborative-based
approach by analyzing the users’ actions.

 Later on in section 12.4, we look at examples of
both: item-based analysis as used in Amazon and
user-based analysis as used by Google News. Here
are some tips that may help you decide which
approach is most suitable for your application:

User

likes

Similar

A B C D

recommend

Items

Figure 12.3 Item-based analysis: similar items are
recommended

A B C

likes recommend

Similar

Users

Items

Figure 12.4 User-based analysis:
items liked by similar users are
recommended

353Recommendation engine fundamentals
■ If your item list doesn’t change much, it’s useful to create an item-to-item corre-
lation table using item-based analysis. This table can then be used in the recom-
mendation engine.

■ If your item list changes frequently, for example for news-related items, it may
be useful to find related users for recommendations.

■ If the recommended item is a user, there’s no option but to find related users.
■ The dimensionality of the item and user space can be helpful in deciding which

approach may be easier to implement. For example, if you have millions of
users and an order of magnitude fewer items, it may be easier to do item-based
analysis. Whenever users are considered, you’ll deal with sparse matrices. For
example, a typical user may have bought only a handful of items from the thou-
sands or millions of items that are available in an application.

■ If there are only a small number of users, it may be worthwhile to bootstrap
your application using item-based analysis. Furthermore, there’s no reason
(other than perhaps time to implement and performance) why these two
approaches can’t be combined.

■ It’s been shown empirically that item-based algorithms are computationally
faster to implement than user-based algorithms and provide comparable or bet-
ter results.

Both user- and item-based analysis require the computation of a similarity metric.
Next, let’s look at how this is done.

12.1.3 Computing similarity using content-based
and collaborative techniques

Regardless of whether you use item-based or user-based analysis, there are two main
approaches for computing similarity, depending on whether you’re analyzing text or
user actions. If you can represent the content associated with an item or a user in
terms of a term vector, then taking the dot product of two normalized vectors pro-
vides a measure of how close two term vectors are. This corresponds to invoking the
method for the TagMagnitudeVector class we introduced in section 8.2.2.

public double dotProduct(TagMagnitudeVector o)

In content-based analysis, recommending items simply amounts to finding items that
have similar term vectors.

 As described in section 2.4 and illustrated in table 12.1, a typical collaborative fil-
tering algorithm represents each customer as an N-dimensional vector of items,
where N is the number of distinct items in the system. Each cell value in the vector
corresponds to either a positive number quantifying how well the user liked the item
or a negative number if the user disliked the item. Similar to the inverse-document
frequency, where commonly used words have less weight, a factor may be used to
compensate for best-selling or highly rated items—the weight for this factor is
inversely proportional to the number of entries that this item has in its column.

354 CHAPTER 12 Building a recommendation engine
Note that this vector will be sparse for almost all users—a typical user would have
acted on only a handful of the N items. In section 12.3.3, we look at one of the ways
to deal with sparse matrices: reducing dimensionality using singular value decompo-
sition (SVD).

 We look at collaborative filtering algorithms in more detail in section 12.3. For
now, you may recall from section 2.4 that there are three main approaches to comput-
ing the similarities while using collaborative filtering:

1 Cosine-based similarity computation
2 Correlation-based similarity computation (Pearson-r correlation)
3 Adjusted cosine-based similarity computation

In section 12.3, we develop the infrastructure to compute these similarities. Next, let’s
look at the advantages and disadvantages of content-based and collaborative
techniques.

12.1.4 Comparison of content-based and collaborative techniques

The following are some advantages and disadvantages of collaborative and content-
based techniques.

■ Collaborative-based techniques have the advantage that they treat an item as a
black-box—they don’t use any information about the content itself. Unlike con-
tent-based techniques, the same infrastructure is applicable across domains and
languages. So if you build a recommendation engine that works well in the Eng-
lish language, you can use the same infrastructure for your site in Chinese. For
content such as images, music, and videos that might not have text associated
with them, content-based analysis may not be an option, unless of course you
allow users to tag the items (see chapter 3 for more on tagging).

■ In content-based analysis, the algorithm has no notion of the item’s quality—it’s
all based on the term vector. There’s no notion of how good or bad a particular
item is—the algorithm doesn’t know whether an article is well-written or poorly
written. On the other hand, in collaborative-based approaches, you have usable
quantitative information about the quality of the item. Web search engines pro-
vide a good analogy to this. Prior to Google, most search engines used content-
based approaches for showing search results. Google, with its page rank, uses a
collaborative approach—it uses how various sites have been linked together to
compute a rank for each site.

Item 1 Item 2 … … Item N

User 1 2

User 2 5 1

….. 1

User m 2
Table 12.1 Representing the
user as an N-dimensional vector

355Content-based analysis
■ Over a period of time, the results from content-based analysis don’t change
much; text associated with the item may not change much. As time progresses,
there may be some changes in the term vector due to changes in the inverse
document frequency for the terms in the document, but on the whole things
don’t change much for an item. Collaborative-based approaches rely on user
interaction, and over a period of time user interaction on the item may change.
For example, a video on a current topic may be rated highly. Over a period of
time, as new content comes in and the video is no longer relevant to current
issues, it may get lower ratings.

■ Collaborative-based systems rely on using the information provided by a user to
find other related users and recommend items based on the ratings from simi-
lar users. In the absence of an adequate amount of data, these systems can per-
form poorly in their prediction capabilities. For a new user with little
interaction history, there may not be enough information to find similar users
using the user’s interaction history for a collaborative approach. Typically, to
overcome this, user-profile information—age, gender, demographics, and so
forth—is also used to find similar users.

■ Collaborative-based systems won’t recommend new items added to the system
unless they’ve been rated by a substantial number of users.

Some recommendation systems use a hybrid approach, combining content-based and
collaborative analysis. The combination could be in the form of implementing the two
methods separately and then combining the results. Another way is to use the user’s
profile to find similar users when a user hasn’t rated enough items. Recommendation
systems may also leverage additional information that may affect the prediction, for
example, the time of the year, or month, or week.

 Now that we have a basic understanding of content-based and collaborative-based
approaches, we take a more detailed look at how to implement these two approaches.
In the next two sections, we first cover content-based analysis, followed by collabora-
tive-based analysis.

12.2 Content-based analysis
Fortunately, most of the work that needs to be done to build a recommendation
engine based on content analysis has already been done in prior chapters, more spe-
cifically in chapters 8, 9, and 11. In this section, we demonstrate finding related items
using Lucene; using the text analytics framework developed in chapter 8; finding
related items for a set of documents; and lastly how content-based results can be fur-
ther personalized for a user.

12.2.1 Finding similar items using a search engine (Lucene)

In this section, we demonstrate how you can find similar items using a search engine
such as Lucene. The basic approach is to compose a query, based on the content of
the document you want to find related items for, and query the index for items that
best match this query.

356 CHAPTER 12 Building a recommendation engine
 At this stage, it’s helpful to look at the output from some of the code that we write
in this section. Listing 12.1 shows the output from one of the runs from the sample
code we implement next (listing 12.2). In this example, 10 blog entries for the tag col-
lective intelligence were retrieved from Technorati and indexed using Lucene. Then
related blog entries for each blog entry were computed—these are shown as tabbed
entries below the blog entry.

Social Media is Just the Next Logical Step in Technology
http://mindblogging.typepad.com/whataconcept
 our learning wiki http://www.estuyajuan.com/blog
 The Dilemma of Personalized Library Services
http://sowebup.wordpress.com
Companies using the Power of WE - The Consumers! http://www.we-magazine.net
 our learning wiki http://www.estuyajuan.com/blog
 The Dilemma of Personalized Library Services
http://sowebup.wordpress.com
Pagerank isn' for humans http://fmeyer.org
 our learning wiki http://www.estuyajuan.com/blog
 A Tool to Attract More People to Your Cause
http://www.movingfrommetowe.com
 Le web 2.0 affiche ses vraies valeurs : financières, s'ntend. A
l'xemple de Google et son
 The Dilemma of Personalized Library Services
http://sowebup.wordpress.com
 Programming Collective Intelligence: Building Smart Web 2.0
Applications http://2.smilesquare.com
 Supporting occupation - Gordon Brown in Israel
http://heathlander.wordpress.com
Programming Collective Intelligence: Building Smart Web 2.0 Applications
http://2.smilesquare.com
 our learning wiki http://www.estuyajuan.com/blog
 Le web 2.0 affiche ses vraies valeurs : financières, s'ntend. A
l'xemple de Google et son
 Pagerank isn' for humans http://fmeyer.org
 The Dilemma of Personalized Library Services
http://sowebup.wordpress.com

First, let’s take a simple approach of hand-crafting this query. Listing 12.2 shows a sim-
ple method that uses the TermFreqVector associated with a document field to create a
BooleanQuery.

 private Query composeTermVectorBooleanQuery(IndexReader indexReader,
 int docNum,String fieldName, float boost) throws Exception {
 TermFreqVector termFreqVector =
 indexReader.getTermFreqVector(docNum, fieldName);

 BooleanQuery booleanQuery = new BooleanQuery();
 String [] terms = termFreqVector.getTerms();
 for (String term: terms) {

Listing 12.1 Sample output from related blogs

Listing 12.2 Creating a BooleanQuery using the term vector in Lucene

Retrieves
term
frequency
vector

357Content-based analysis
 Query termQuery = new TermQuery(new Term(fieldName,term));
 booleanQuery.add(termQuery, BooleanClause.Occur.SHOULD);
 }
 booleanQuery.setBoost(boost);
 return booleanQuery;
 }

We first obtain the TermFreqVector associated with the specified document and the
field. Next, we create an instance of BooleanQuery, to which we add all the terms (or a
subset of terms) from the term vector. Note that we specify the condition Boolean-
Clause.Occur.SHOULD, which means that not all the terms are required. Lastly, since
we combine the query with other Boolean queries, we set a boost factor for this query.

 Let’s apply this approach to our running example of blog entries. We build on our
example from chapter 11, where we indexed blog entries. Let’s find related blog
entries for each blog entry in our Lucene index. Listing 12.3 shows the code for
obtaining related blog entries for a given blog in our index.

private List<RetrievedBlogEntry> getRelatedBlogEntries(
 IndexSearcher indexSearcher, int docNum)
 throws Exception {
 IndexReader indexReader = indexSearcher.getIndexReader();

 Query booleanTitleQuery = composeTermVectorBooleanQuery(
 indexReader, docNum,"title", 3.0f);

 Query booleanCompleteTextQuery =composeTermVectorBooleanQuery(
 indexReader, docNum,
 "completeText", 1.0f);

 BooleanQuery likeThisQuery = new BooleanQuery();
 likeThisQuery.add(booleanTitleQuery, BooleanClause.Occur.SHOULD);
 likeThisQuery.add(booleanCompleteTextQuery,
 BooleanClause.Occur.SHOULD);

 return getRelatedBlogEntries(indexSearcher, likeThisQuery);
 }

 private List<RetrievedBlogEntry> getRelatedBlogEntries(
 IndexSearcher indexSearcher,
 Query query) throws Exception {
 RetrievedBlogHitCollector blogHitCollector =
 new RetrievedBlogHitCollector(indexSearcher);
 indexSearcher.search(query, blogHitCollector);
 return blogHitCollector.getBlogEntries();
 }

Since we want to weigh the title more than other text, we first create an instance of
BooleanQuery using the title and apply a boost factor of 3. This is combined with a
BooleanQuery representation for the complete text. Lastly, related blog entries are
obtained from the index using the RetrievedBlogHitCollector class we imple-
mented in section 11.3.7.

Listing 12.3 Creating a composite BooleanQuery and retrieving blog entries

Applies
boost factor
for query

Creates
BooleanQuery,

adding in terms

Creates
BooleanQuery for
title and boosts it

Creates BooleanQuery
for complete text

Combines two queries

Retrieves
related entries
using query

358 CHAPTER 12 Building a recommendation engine
 Finally, listing 12.4 shows the code for retrieving all the blog instances from the
index and getting the related items for each blog entry.

public void illustrateMoreLikeThisByQuery(Directory indexDirectory)
 throws Exception {
 IndexSearcher indexSearcher = new IndexSearcher(indexDirectory);
 for (int i = 0; i < indexSearcher.maxDoc(); i ++) {
 Document document = indexSearcher.doc(i);
 System.out.println(document.get("title") + " " +
 document.get("url"));
 if (document != null) {
 List<RetrievedBlogEntry> relatedBlogs =
 getRelatedBlogEntries(indexSearcher, i) ;
 for (RetrievedBlogEntry relatedBlog : relatedBlogs) {
 System.out.println("\t" + relatedBlog.getTitle() + +
 " " + relatedBlog.getUrl());
 }
 }
 }
 }

Our rather simplistic approach doesn’t take into account the term frequency and
inverse document frequencies associated with each term in the query. Fortunately,
Lucene’s contrib/query package provides a fairly good version of this functionality.
Download and compile the following Lucene similarity package:

 http://svn.apache.org/repos/asf/lucene/java/trunk/contrib/queries/src/java/
org/apache/lucene/search/similar/MoreLikeThis.java

 Listing 12.5 shows the same functionality developed using the MoreLikeThis class.

 public List<RetrievedBlogEntry>
 getRelatedBlogsUsingLuceneMoreLikeThis(
 IndexSearcher indexSearcher,
 int docNum) throws Exception {
 IndexReader indexReader = indexSearcher.getIndexReader();
 MoreLikeThis moreLikeThis = new MoreLikeThis(indexReader);
 moreLikeThis.setAnalyzer(getAnalyzer());
 String [] fieldNames = {"title", "completeText"};
 moreLikeThis.setFieldNames(fieldNames);
 moreLikeThis.setMinDocFreq(0);
 Query query = moreLikeThis.like(docNum);
 System.out.println(query.toString());
 return getRelatedBlogEntries(indexSearcher, query);
 }

MoreLikeThis is a fairly sophisticated class that creates a query to find items similar to
a particular document. It has a number of settings, such as the minimum number of
documents in which a term should appear, the minimum term frequency, the mini-
mum and maximum length of words, stop words, and the maximum number of query

Listing 12.4 Iterating over all documents in the index

Listing 12.5 Iterating over all documents in the index

Specifies fields to
create query

Min
number of
documents
containing
each term

Creates query
for document

http://svn.apache.org/repos/asf/lucene/java/trunk/contrib/queries/src/java/org/apache/lucene/search/similar/MoreLikeThis.java
http://svn.apache.org/repos/asf/lucene/java/trunk/contrib/queries/src/java/org/apache/lucene/search/similar/MoreLikeThis.java

359Content-based analysis
terms. Using this class is fairly straightforward. We create an instance of More-
LikeThis, set the analyzer, specify the fields to be used, and set the minimum docu-
ment frequency to be 0, because we have few blog entries in our Lucene index.

 Next, let’s look at building a content-based recommendation engine using the text
analytics infrastructure we developed in chapter 8.

12.2.2 Building a content-based recommendation engine

You may recall the TagMagnitudeVector class from section 8.2.2 and listing 8.18. The
TagMagnitudeVector class contains a list of tags with magnitudes, where the magni-
tude terms are normalized such that the sum of the squares of the magnitudes for all
the terms is 1. Each term magnitude is obtained by computing the term frequency
and the inverse document frequency for the terms. The similarity between two
documents can be computed by taking their dot products. For example, for a Tag-
MagnitudeVector, use the following method:

public double dotProduct(TagMagnitudeVector o) ;

Finding similar items for an item amounts to finding items that have the highest dot
products with the given item’s term vector. Let’s illustrate how to build such a recom-
mendation engine. First, we need to define a simple Java bean class RelevanceText-
DataItem, which is a container for a TextDataItem along with a double relevance
value. Listing 12.6 contains the implementation for RelevanceTextDataItem.

package com.alag.ci.recoengine;

import com.alag.ci.cluster.TextDataItem;

public class RelevanceTextDataItem implements
 Comparable<RelevanceTextDataItem>{
 private double relevance = 0;
 private TextDataItem dataItem = null;

 public RelevanceTextDataItem(TextDataItem dataItem, double relevance) {
 this.relevance = relevance;
 this.dataItem = dataItem;
 }

 public int compareTo(RelevanceTextDataItem other) {
 if(this.relevance > other.getRelevance()) {
 return -1;
 }
 if(this.relevance < other.getRelevance()) {
 return 1;
 }
 return 0;
 }

 public TextDataItem getDataItem() {
 return dataItem;
 }

Listing 12.6 Implementation for RelevanceTextDataItem

Implementation
for interface

360 CHAPTER 12 Building a recommendation engine
 public double getRelevance() {
 return relevance;
 }
}

Next, let’s define a class, ContentBasedBlogRecoEngine, which will retrieve blog
entries from Technorati and then find relevant blog entries for each blog entry. List-
ing 12.7 shows the first part of the code for ContentBasedBlogRecoEngine. This list-
ing shows the main steps in building a content-based recommendation
engine—creating the dataset, finding relevant items, and printing it out.

package com.alag.ci.recoengine;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

import com.alag.ci.blog.dataset.impl.BlogDataSetCreatorImpl;
import com.alag.ci.blog.search.RetrievedBlogEntry;
import com.alag.ci.cluster.DataSetCreator;
import com.alag.ci.cluster.TextDataItem;
import com.alag.ci.textanalysis.TagMagnitudeVector;

public class ContentBasedBlogRecoEngine {

 public static void main(String [] args) throws Exception{
 ContentBasedBlogRecoEngine recoEngine =
 new ContentBasedBlogRecoEngine();
 List<TextDataItem> dataItems = recoEngine.createLearningData();
 recoEngine.illustrateContentRecoEngine(dataItems);
 }

 public List<TextDataItem> createLearningData() throws Exception {
 DataSetCreator creator = new BlogDataSetCreatorImpl();
 return creator.createLearningData();
 }

 public void illustrateContentRecoEngine(List<TextDataItem> dataItems) {
 for (TextDataItem dataItem: dataItems) {
 RetrievedBlogEntry blogEntry =
 (RetrievedBlogEntry)dataItem.getData();
 System.out.println(blogEntry.getTitle());
 List<RelevanceTextDataItem> relevantItems =
 getRelevantDataItems(
 dataItem,dataItems) ;
 for (RelevanceTextDataItem relevantItem: relevantItems) {
 blogEntry =
 (RetrievedBlogEntry)(
 relevantItem.getDataItem().getData());
 System.out.println("\t" + blogEntry.getTitle() +
 " " + relevantItem.getRelevance());
 }
 }
 }

Listing 12.7 The main steps for building a content-based recommendation engine

Retrieves blog entries
from Technorati

361Content-based analysis
The method createLearningData() uses an instance of BlogDataSetCreatorImpl (see
chapter 8) to create a List of TextDataItems. illustrateContentRecoEngine simply
iterates over all blog entry instances to print out related items for each entry. Listing 12.8
shows the implementation for the method to find the related items for the blogs.

 private List<RelevanceTextDataItem> getRelevantDataItems(
 TextDataItem parentDataItem,
 List<TextDataItem> candidateDataItems) {
 TagMagnitudeVector tmv = parentDataItem.getTagMagnitudeVector();
 List<RelevanceTextDataItem> relevantItems = new

ArrayList<RelevanceTextDataItem>();
 for (TextDataItem candidateDataItem: candidateDataItems) {
 if (!parentDataItem.equals(candidateDataItem)) {
 double relevance =

tmv.dotProduct(candidateDataItem.getTagMagnitudeVector());
 if (relevance > 0.) {
 relevantItems.add(new RelevanceTextDataItem(
 candidateDataItem, relevance));
 }
 }
 }
 Collections.sort(relevantItems);
 return relevantItems;
 }
}

To find related blogs, we simply iterate over all blog instances, compute the similarity
with the blog of interest, and then sort all relevant blog items based on the similarity.
Listing 12.9 shows sample output from the code developed in this section. Here, you
can see the related blog entries for a blog along with the level of relevance between
the parent and the children blogs.

Social Media is Just the Next Logical Step in Technology http://
mindblogging.typepad.com/whataconcept

 our learning wiki http://www.estuyajuan.com/blog 0.01720982414882634
 The Dilemma of Personalized Library Services
http://sowebup.wordpress.com 0.01403890610073534
Companies using the Power of WE - The Consumers! http://www.we-magazine.net
 our learning wiki http://www.estuyajuan.com/blog 0.0396024241655864
 The Dilemma of Personalized Library Services
http://sowebup.wordpress.com 0.016152829610989242
Pagerank isn’ for humans http://fmeyer.org
 our learning wiki http://www.estuyajuan.com/blog 0.04675732078317664
 A Tool to Attract More People to Your Cause
…http://www.movingfrommetowe.com 0.038080852316322855
 Le web 2.0 affiche ses vraies valeurs : financières, s'ntend. A
l'xemple de Google et son 0.029162920196574908
 The Dilemma of Personalized Library Services
http://sowebup.wordpress.com 0.0153460076524816

Listing 12.8 Getting relevant items in ContentBasedBlogRecoEngine

Listing 12.9 Related entries for a blog

Dot
product
of term
vectors

Sort results based
on relevance

362 CHAPTER 12 Building a recommendation engine
 Programming Collective Intelligence: Building Smart Web 2.0
Applications http://2.smilesquare.com 0.01044583466318214
 Supporting occupation - Gordon Brown in Israel
http://heathlander.wordpress.com 0.006828125603489045
Programming Collective Intelligence: Building Smart Web 2.0
Applications http://2.smilesquare.com
 our learning wiki http://www.estuyajuan.com/blog 0.031064220852246284
 Le web 2.0 affiche ses vraies valeurs : financières, s'ntend. A
l'xemple de Google et son 0.027501197695123845
 Pagerank isn’ for humans http://fmeyer.org 0.01044583466318214
 The Dilemma of Personalized Library Services
http://sowebup.wordpress.com 0.0036025401391830475

So far we’ve looked at how to build a content-based recommendation engine using a
search engine and using the text processing toolkit we built in chapter 8. A common
use case is when we have a collection of items, such as a topic or subtopic, and we want
to find items that are similar to this collection. We look at this next.

12.2.3 Related items for document clusters

In an application, it’s common to define topics or subtopics that have underlying doc-
uments associated with them. For example, if you’re building a site about data min-
ing, you may have five subtopics: association rules, attribute importance, clustering,
classification, and regression. For each of these subtopics, you may have filed a num-
ber of documents. You want to build a representation for each of these subtopics by
using the content that’s been associated with each subtopic.

 Fortunately, each document has an associated normalized term vector, and finding
a composite representation from the document set simply amounts to adding all the
term vectors for the documents. Listing 12.10 illustrates the code for combining the
different term vectors.

 public void illustrateMergingOfDocuments(
 List<TagMagnitudeVector> tagMagnitudeVectors) {
 List<TagMagnitude> tagMagnitudes = Collections.emptyList();
 TagMagnitudeVector emptyTMV =
 new TagMagnitudeVectorImpl(tagMagnitudes);
 TagMagnitudeVector mergedTMV = emptyTMV.add(tagMagnitudeVectors);
 System.out.println(mergedTMV);
 }

Once we have a combined term vector representation for the subtopic, finding similar
items is the same as in section 12.2.2. In section 11.6.3, we looked at trends in intelli-
gent search where you can further personalize search results using metadata associ-
ated with the user. We briefly look at this next.

12.2.4 Personalizing content for a user

When there’s a tag vector representation for the user, it’s also possible to sort the
candidate list of items using the term vector representation for the user. Typically, a

Listing 12.10 Code to illustrate merging of documents

363Collaborative filtering
candidate list of items is stored for each item of interest (around 20–30 items).
Then, based on which user is visiting the content, the user’s term vector is used to
bubble up the content that may be of most interest to the user. Make sure that the
recommendation list isn’t completely homogenous and there’s enough diversity in
the recommendation list to allow the user to explore new areas of interest.

 With this overview of content-based recommendation systems, we’re now ready to
take a more detailed look at collaborative filtering.

12.3 Collaborative filtering
In collaborative filtering, an item is considered as a black box—we don’t look at its
content—and user interactions (such as rating, saving, purchasing) with the item are
used to recommend an item of interest to the user. More formally, given a dataset of
user actions (also called the user-item dataset), we want to recommend items to a user.
As discussed in section 12.1.2, we either find similar users and recommend items liked
by these users, or we find items similar to an item of interest. There are two main
classes of collaborative filtering algorithms—memory-based and model-based.

 In memory-based algorithms, the entire user-item database is used. The algorithm
first finds a set of similar users and then makes a recommendation or set of recommen-
dations (top n recommendations) by combining the preferences of the similar users.
This approach is also known as nearest neighbor. Typically, the expected rating for an item
is estimated by combining the ratings of similar users, using the degree of similarity as
a measure to combine the ratings. One problem with using the weighted sum to predict
the rating is the bias that different users may have in rating items. For example, one user
may provide ratings that average 3 while another may provide ratings that are similar but
which average 3.5. Therefore, it’s also common to predict the ratings for a user using
the weighted sum of the deviations in ratings of similar users. In section 12.1.3, we
looked at the three approaches to computing the similarities between users: cosine-
based similarity computation, Pearson-r correlation, and the adjusted cosine-based sim-
ilarity computation. In an application with a large number of users, it isn’t practical to
compute similar users for a user in real-time. Therefore, it’s common to pre-compute
this association either in a lookup table or by creating user clusters.

 Model-based collaborative filtering algorithms create a model (see chapters 9
and 10) using the user-item data to predict ratings that a user is likely to give. Model-
based algorithms try to model the user based on past ratings and then use the mod-
els to predict the ratings on items the user hasn’t visited or rated. Commonly used
model-based approaches include latent semantic indexing (LSI), Bayesian cluster-
ing, probabilistic latent semantic indexing (PLSI), multiple multiplication factor
model, Markov Decision process, and latent Dirichlet allocation.

12.3.1 k-nearest neighbor

In section 2.4, we worked through the process of collaborative filtering for generat-
ing both an item-to-item correlation matrix and a user-to-user similarity matrix.

364 CHAPTER 12 Building a recommendation engine
Collaborative filtering algorithms use the user-item matrix shown in table 12.1 as
input. The matrix is transposed—each item becomes a row and users become col-
umns—when related items are to be found.

 There are really two steps in applying collaborative filtering. First, we need to
determine similar items or users, and then make a prediction using the similar items.
This approach is also commonly known as k-nearest neighbor (k-NN). The predicted
value is typically a weighted sum of the ratings for the k neighboring items. To take
care of different biases in ratings among the k neighbors, the weighted sum of the
deviations in ratings from the user’s average rating value is also used. Let’s look at this
computation via an example.

 We illustrate the process of predicting ratings using the ratings of similar users by
working through the example we introduced in section 2.4.1. Table 12.2 shows the
user-item matrix associated with this example.

In section 2.4.1, we worked through three methods for computing the similarities.
Using the Pearson-r correlation computation, we arrived at the user-to-user similarity
matrix shown in table 12.3.

John is correlated with Jane by -0.866, while he’s correlated to Doe by -0.5. Next, let’s
look at how we can predict John’s expected rating for Photo1 using the ratings of sim-
ilar users Jane and Doe.

 John’s expected rating for Photo1 = John’s average rating + w1 * (Jane’s rating –Jane’s
average rating) + w2 * (Doe’s rating –Doe’s average rating)

 = 3 + (-0.866/1.366) * (2 – 8/3) + (-0.5/1.366) * (1 - 3)
 = 4.2

Similarly, the predicted rating for Photo2 from John is

 = 3 + (-0.866/1.366) * (2 – 8/3) + (-0.5/1.366) * (3 - 3)
 = 3.4

Photo1 Photo2 Photo3 Average

John 3 4 2 3

Jane 2 2 4 8/3

Doe 1 3 5 3

Average 2 3 11/3 26/3

John Jane Doe

John 1 -0.866 -0.5

Jane -0.866 1 0.87

Doe -0.5 0.87 1

Table 12.2 Ratings
data used in the example

Table 12.3 Correlation
matrix for the users

365Collaborative filtering
If you remember from our discussions in earlier chapters, the inverse document fre-
quency (idf) is used in the term vector to emphasize terms that aren’t common across
documents. A similar concept, inverse user frequency, is used to pre-process the user-
item data. Items that are popular aren’t very good at capturing similarities between
users and items. Therefore, if n is the total number of users and ni of them have rated
a particular item, then the inverse user frequency is defined as log (n/ni). Entries in
the user-item table are multiplied by their inverse user frequencies before the compu-
tation of the similarities.

 For large-scale systems, it can be expensive to find k neighbors in real-time. Users
are typically clustered offline so as to retrieve the k nearest neighbors in real time. K-
NN algorithms need to deal with sparse data, which can affect the quality of the solu-
tion. Furthermore, these algorithms can run into scalability issues, as their computa-
tion grows with both the number of users and the number of items being processed.

 For this reason, large sites, such as Amazon, use item-based collaborative filtering.
The example in section 2.4 illustrated the process of item-to-item collaborative filter-
ing. In this process, the user-item table (table 12.1) is transposed to have items as rows
and users as columns. In essence, every item has a vector associated with it, each user
being a dimension. For every item, the k (a number typically between 10 and 30) clos-
est items are obtained using a similarity function (vector dot product or correlation
computation). Related items for an item are stored in the database. Once the related
item table has been computed for each item, displaying related items to a user is a sim-
ple lookup. This approach scales independently of the number of users on the system.

 Next, let’s look at how we can implement these algorithms.

12.3.2 Packages for implementing collaborative filtering

There are a number of different options in implementing k-nearest neighbor, which
we go through in this section.

 The collaborative filtering problem is similar to the text analysis problem—both of
them deal with large-dimensional sparse matrices. In chapter 8, we developed the
TagMagnitudeVector infrastructure for representing a term vector and computing
the cosine similarity between two term vectors. The first option is to leverage this
infrastructure. For data represented in the user-item table (see table 12.1), each row
corresponding to a user is equivalent to a term vector for a document. This can be
represented by a TagMagnitudeVector, and cosine-similarity can be computed by tak-
ing the dot product of two TagMagnitudeVector instances. Furthermore, if we wanted
to compute the similarity by computing the Pearson-r correlation, we can extend the
TagMagnitudeVector class so that all the terms would be normalized to have a zero
mean and unit magnitude. Again, the correlation between two such normalized vec-
tors would be their dot product.

 The second option is to leverage WEKA (see section 7.2). The weka.core.neigh-
boursearch package contains a number of classes that implement the nearest-neighbor
search algorithms. Some of these classes are described in table 12.4 and shown in fig-
ure 12.5. All these search classes extend the abstract base class NearestNeigbourSearch.

366 CHAPTER 12 Building a recommendation engine
In section 10.4, we looked at classifiers available in WEKA. The weka.classifiers.
lazy class contains classification algorithms that are based on nearest-neighbor
search algorithms. Some of these algorithms are shown in figure 12.5 and described
in table 12.5.

Table 12.4 NearestNeighborSearch classes in WEKA

Class Description

NearestNeighbourSearch Abstract class for nearest-neighbor search

BallTree Implements the BallTree/Metric Tree algorithm
for nearest-neighbor search

CoverTree Implements the CoverTree data structure for
nearest-neighbor search

KDTree Implements the KDTree search algorithm for
nearest-neighbor search

LinearNNSearch Implements the brute force search algorithm
for nearest-neighbor search

Table 12.5 Classifiers in WEKA based on nearest-neighbor search

Class Description

IB1 Nearest-neighbor classifier.

IBk K-nearest neighbors classifier.

KStar K* is an instance-based classifier that uses an entropy-based distance function.

Figure 12.5 WEKA classes related to instance-based learning and nearest-neighbor search

367Collaborative filtering
Next, let’s walk through a simple example that illustrates what’s involved in imple-
menting the k-nearest neighbor algorithm using WEKA. We split the implementation
into two sections and use the dataset in table 12.2 as our example. The first part deals
with creating the Instances to represent the data, while the second part deals with
building a classifier and evaluating it. Listing 12.11 shows the implementation for cre-
ating the Instances dataset along with the main method that enumerates the three
things this example will do: create the attributes, create the learning dataset, and illus-
trate the k-NN algorithm.

package com.alag.ci.cf;

import weka.classifiers.lazy.IBk;
import weka.core.Attribute;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;

public class KNNWEKAExample {

 public static final void main(String [] args) throws Exception {
 KNNWEKAExample eg = new KNNWEKAExample();
 FastVector attributes = eg.createAttributes();
 Instances instances = eg.createLearningDataSet(attributes);
 eg.illustrateClassification(instances);
 }

 private FastVector createAttributes() {
 FastVector allAttributes = new FastVector(3);
 allAttributes.addElement(new Attribute("item1"));
 allAttributes.addElement(new Attribute("item2"));
 allAttributes.addElement(new Attribute("item3"));
 return allAttributes;
 }

 private Instances createLearningDataSet(FastVector allAttributes) {
 Instances trainingDataSet =
 new Instances("wekaCF", allAttributes, 3);
 trainingDataSet.setClassIndex(2);
 addInstance(trainingDataSet, 3,4,2);
 addInstance(trainingDataSet, 2,2,4);
 addInstance(trainingDataSet, 1,3,5);
 System.out.println(trainingDataSet);
 return trainingDataSet;
 }

 private void addInstance(Instances trainingDataSet,
 double item1, double item2, double item3) {
 Instance instance = new Instance(3);
 instance.setDataset(trainingDataSet);
 instance.setValue(0, item1);
 instance.setValue(1, item2);
 instance.setValue(2, item3);
 trainingDataSet.add(instance);
 }

Listing 12.11 Creating the dataset for implementing k-NN

Create three
numerical attributes

Create learning
dataset

Set third attribute
to be predicted

368 CHAPTER 12 Building a recommendation engine
The implementation is fairly straightforward. We first create the attributes and then
the set of instances:

 FastVector attributes = eg.createAttributes();
 Instances instances = eg.createLearningDataSet(attributes);

Note that we set the third attribute, item3, to be the predicted attribute:

trainingDataSet.setClassIndex(2);

Listing 12.12 shows the output generated by printing out the Instances:

System.out.println(trainingDataSet);

Note that all the three attributes are mapped as numerical attributes.

@relation wekaCF

@attribute item1 numeric
@attribute item2 numeric
@attribute item3 numeric

@data
3,4,2
2,2,4
1,3,5

Next, let’s look at the second part of the code, which deals with creating a classifier
and querying the classifier for the expected values. This is shown in listing 12.13.

 public void illustrateClassification(Instances instances)
 throws Exception {
 IBk ibk = new IBk(1);
 ibk.buildClassifier(instances);
 System.out.println("\nPrediction:");
 for (int i = 0; i < instances.numInstances(); i++) {
 Instance instance = instances.instance(i);
 double result = ibk.classifyInstance(instance);
 System.out.println("Expected=" + instance.value(2) +
 " Predicted=" + result);
 }
 }
}

First, we create an instance of the k-nearest neighbor classifier. Since we have only
three data points in our example, we set k to be 1:

IBk ibk = new IBk(1);

Next, we build the classifier (ibk.buildClassifier(instances);) and then evaluate
each instance for the predicted value for item3. We only have three examples and

Listing 12.12 The dataset created from the first part of code

Listing 12.13 Making predictions using k-nearest neighbor

Create
instance of
IBk classifier

Build classifier

Classify single instance

369Collaborative filtering
each query instance is a perfect match for one of the three cases. Listing 12.14 shows
the output for item3 for each of the three cases—as expected, the expected and pre-
dicted values matched perfectly.

Prediction:
Expected=2.0 Predicted=2.0
Expected=4.0 Predicted=4.0
Expected=5.0 Predicted=5.0

The third alternative is to use one of a number of free packages that implement col-
laborative filtering in Java. We briefly go through three of the popular Java-based open
source packages. Cofi (http://www.nongnu.org/cofi/) is a project available under
GPL and is led by Daniel Lemire. The music recommendation site Racofi (http://
racofi.elg.ca/index.html) uses the Cofi package. The Cofi package is fairly lightweight
and easy to use. A number of memory-based collaborative filtering algorithms are
implemented in this package.

 Taste (http://taste.sourceforge.net/) is another collaborative filtering package
that’s fast and lightweight. It supports both item-based and user-based memory-based
collaborative filtering algorithms. It’s fairly well-documented and easy to use.

 Cofe (http://eecs.oregonstate.edu/iis/CoFE//?q=taxonomy/term/6) is yet anoth-
er collaborative filtering package that’s freely available. It’s well-documented and fairly
easy to use.

 Next, let’s look at a commonly used model-based collaborative filtering method
known as latent semantic indexing (LSI), which reduces the dimensionality of the user-
item matrix using a technique known as singular value decomposition (SVD).

12.3.3 Dimensionality reduction with latent semantic indexing

As noted in section 3.5.2, LSI has been used in content-based analysis to solve the
problems of synonymy and polysemy. Consider a term-document matrix as shown in
table 12.6, where each row corresponds to terms across documents, while a column
represents a document. The ith column in this matrix corresponds to the term-vector
representation for the ith document. In essence, to create this matrix, we first need to
create the term vector for each document and then join all the term vectors vertically
to create this matrix. Note that a cell value corresponds to the product of the term fre-
quency and inverse document frequency for that term and document.

Listing 12.14 The output predicted and expected values for our example

Document 1 Document 2 …. Document n

Term 1

Term 2

….

Term m
Table 12.6
Term-document matrix

http://www.nongnu.org/cofi/
http://racofi.elg.ca/index.html
http://racofi.elg.ca/index.html
http://taste.sourceforge.net/
http://eecs.oregonstate.edu/iis/CoFE//?q=taxonomy/term/6

370 CHAPTER 12 Building a recommendation engine
This matrix is similar to the user-item matrix in table 12.1. In LSI,2 the dimensionality
of the term-document matrix is reduced using the process of singular value decompo-
sition (SVD). The following are a few motivations for doing such a transformation on
the term-document matrix:

■ Necessary evil —If the term-document matrix is too large from a computational
standpoint, an approximation may be more computationally friendly.

■ Filtering noise —If the term-document matrix is noisy, the transformed matrix
may be a better approximation of the concepts.

■ Sparse matrix —If the term-document matrix is sparse, transforming the matrix
may increase its density.

This is analogous to applying SVD to the term-document matrix. To understand this
further, we need to first understand SVD and how it transforms the matrix.

 An arbitrary matrix A of size m x n can be decomposed into three matrices using
SVD. Let r be the rank of A. As shown in figure 12.6, the matrices are

■ U, an orthogonal3 square matrix of size m x r.
■ S, a diagonal matrix of size r x r, with each diagonal value being the eigen value

for the matrix. All values of S are positive and stored top to bottom in decreas-
ing order of magnitude.

■ V is an orthogonal square matrix of size n x r.
We can reduce the r x r dimensionality of
the matrix S to use only the top k singular
values. As shown in figure 12.6, the matrices
U and Vt are reduced in dimensionality for
this approximation of A. The lower dimen-
sionality allows us to approximate using k
singular values.

 Next, let’s work through the same exam-
ple as in the previous section, but this time
we apply dimensionality reduction to illus-
trate the SVD process.

12.3.4 Implementing dimensionality reduction

JAMA4 is a widely used linear algebra package developed by MathWorks5 and is
intended to be the standard matrix class for Java. WEKA uses JAMA; the
weka.core.matrix.Matrix class represents a matrix and has a number of methods,
including one to compute the SVD of a matrix. In this section, we develop the Java
code to implement dimensionality reduction using the example from section 12.3.1.

2 http://lsirwww.epfl.ch/courses/dis/2003ws/papers/ut-cs-94-270.pdf
3 The product of the matrix and its transpose gives the identity matrix. See http://en.wikipedia.org/wiki/

Orthogonal_matrix.
4 http://math.nist.gov/javanumerics/jama/
5 http://www.mathworks.com/

A U

m x n
m x r

k

S

r x r

k
k

TV

k

r x n

Figure 12.6 Illustration of the dimensionality
reduction

http://lsirwww.epfl.ch/courses/dis/2003ws/papers/ut-cs-94-270.pdf
http://en.wikipedia.org/wiki/Orthogonal_matrix
http://en.wikipedia.org/wiki/Orthogonal_matrix
http://math.nist.gov/javanumerics/jama/
http://www.mathworks.com/

371Collaborative filtering
 We develop SVDExample, a simple class that first creates a matrix representation for
the data in table 12.2 and computes the SVD for the matrix. Then we approximate the
matrix using reduced dimensionality. Listing 12.15 shows the first part of the code
that deals with representing the data in a Matrix instance and computing its SVD.

package com.alag.ci.cf;

import weka.core.matrix.Matrix;
import weka.core.matrix.SingularValueDecomposition;

public class SVDExample {

 public static final void main(String [] args) {
 SVDExample eg = new SVDExample();
 Matrix userItem = eg.createUserItemMatrix();
 SingularValueDecomposition svd =
 eg.computeSVD(userItem);
 eg.reduceDimension(userItem, svd, 1);
 eg.reduceDimension(userItem, svd, 2);
 eg.reduceDimension(userItem, svd, 3);
 }

 public Matrix createUserItemMatrix() {
 double [][] values = { {3,4,2}, {2,2,4}, {1,3,5} };
 Matrix userItem = new Matrix(values);
 System.out.println("UserItem: Rank=" + userItem.rank());
 System.out.println(userItem);
 return userItem;
 }

 public SingularValueDecomposition computeSVD(Matrix matrix) {
 SingularValueDecomposition svd = matrix.svd();
 System.out.println("U:\n" + svd.getU());
 System.out.println("UtU is orthogonal:\n" +
 svd.getU().transpose().times(svd.getU()));
 System.out.println("S:\n" + svd.getS());
 System.out.println("Vt:\n" + svd.getV().transpose());
 System.out.println("VtV is orhogonal:\n" +
 svd.getV().transpose().times(svd.getV()));
 return svd;
 }

The example first creates a Matrix representation for the data. Note that the rank of
the matrix is also printed in the method createUserItemMatrix(). The output from
the first part of the program is shown in listing 12.16. Note that the rank for our
matrix is 3.

UserItem: Rank=3
 3 4 2
 2 2 4
 1 3 5

Listing 12.15 Representing the data to illustrate dimensionality reduction

Listing 12.16 Output from running the first part of the code

Develop Matrix
representation
for data

Compute SVD for matrix

Illustrate
dimensionality
reduction

Print rank of original matrix

U and V are
orthogonal
matrices

372 CHAPTER 12 Building a recommendation engine
U:
 0.55 -0.83 0.12
 0.54 0.23 -0.81
 0.64 0.51 0.57

UtU is orthogonal:
 1 0 0
 0 1 0
 0 0 1

S:
 8.93 0 0
 0 2.71 0
 0 0 0.91

Vt:
 0.38 0.58 0.72
 -0.55 -0.48 0.68
 -0.74 0.66 -0.14

VtV is orthogonal:
 1 0 0
 0 1 0
 0 0 1

As shown in listing 12.16, S contains three eigen values: 8.93, 2.71, and 0.91. Note that
they appear in descending order in the diagonal of the matrix. Also, both U and V are
orthogonal matrices. Next, let’s approximate the matrices by reducing the dimension-
ality of the matrix, the code for which is shown in listing 12.17.

 public Matrix reduceDimension(Matrix userItem,
 SingularValueDecomposition svd, int k) {
 int m = userItem.getRowDimension();
 int n = userItem.getColumnDimension();
 Matrix Uk = matrixSubset(svd.getU(),m,k);
 Matrix Sk = matrixSubset(svd.getS(),k,k);
 Matrix Vtk = matrixSubset(svd.getV().transpose(),k,n);
 Matrix approx = Uk.times(Sk).times(Vtk);
 System.out.println(k + " dimensional approx matrix:\n " + approx);
 return approx;
 }

 private Matrix matrixSubset(Matrix orig, int m, int k) {
 Matrix newMatrix = new Matrix(m,k);
 for (int i = 0; i < m; i++) {
 for (int j = 0; j < k; j ++) {
 newMatrix.set(i, j, orig.get(i,j));
 }
 }
 return newMatrix;
 }
}

For a given value of k—in our example, this is shown for the values 1, 2, and 3—we com-
pute the subset of the three matrices U, S, and V. Next, we approximate the original

Listing 12.17 Code illustrating dimensionality reduction

Compute appropriate
subsets of matrices

Approximate original matrix
using reduced matrices

373Real-world solutions
matrix using these reduced matrices, the output of which is shown in listing 12.18 for
the three different k values.

1 dimensional approx matrix:
 1.84 2.84 3.53
 1.81 2.79 3.47
 2.15 3.33 4.14

2 dimensional approx matrix:
 3.08 3.93 2.02
 1.45 2.48 3.9
 1.39 2.66 5.07

3 dimensional approx matrix:
 3 4 2
 2 2 4
 1 3 5

Note that the approximation using k=2 is fairly close to the original values of the ini-
tial matrix, and we get back the original matrix for k=3. Lastly, let’s look at a probabi-
listic model–based approach in collaborative filtering.

12.3.5 Probabilistic model–based approach

In chapter 10, we briefly introduced the Bayesian belief network—a directed acyclic
graph where nodes correspond to random variables and directed arcs between nodes
signify conditional probability between the parent and child nodes. In probabilistic
collaborative filtering, each item corresponds to a node in the belief network. The
states of a node correspond to the different rating values, with an additional state cor-
responding to the missing or “no vote” state. The learning algorithm searches for dif-
ferent network topologies corresponding to dependencies for each item. Once the
network has been learned, each item will have parent nodes corresponding to items
that are best predictors for the expected ratings.

 In this section, we’ve covered various approaches to implementing collaborative
filtering. Next, let’s look at some real-world examples of how this technology has been
applied.

12.4 Real-world solutions
In this section, we cover three case studies of how large-scale recommendation systems
have been developed at Amazon.com, Google News, and at Netflix. These three case
studies should give you an insight into how large-scale (millions of users and millions of
items) recommendation systems have been developed in the real world. We learn some-
thing new with each use case. First, we learn about Amazon’s item-to-item recommen-
dation engine that scales to millions of users and millions of items. Next, we look at
Google News personalization to learn about how to deal with noisy user input high item
churn. Lastly, we look at Netflix and learn the approach taken by various researchers to
improve the results of a recommendation engine, along with Netflix’s approach.

Listing 12.18 Output from running the second part of the code

374 CHAPTER 12 Building a recommendation engine
12.4.1 Amazon item-to-item recommendation

Perhaps one of the best-known examples of a recommendation system is at Ama-
zon.com. Amazon reports high click-through and email advertising conversion rates
using their recommendation engine, compared to untargeted content such as banner
advertisements and top-seller lists. The content of this section is drawn from two
sources: first from a paper6 published on item-to-item collaborative filtering, and sec-
ond from Greg Linden’s blog7 entries. (Linden developed Amazon’s recommenda-
tion system.)

 Figure 12.1 showed an example of the recommendations Amazon provides to a
user browsing a book. For a given item (book), Amazon shows related items by analyz-
ing customer purchasing patterns. Figure 12.7 shows another example of personalized
recommendations based on items that the user has purchased in the past.

 Users can browse through the list of recommended items, and as shown in Fig-
ure 12.8, can rate an item and/or remove items from consideration from the recom-
mendation engine.

6 Linden, G., Smith, B., and York, J. 2003. “Amazon.com Recommendations: Item-to-Item Collaborative Filter-
ing.” IEEE Internet Computing 7, 1 (Jan. 2003), 76-80. DOI= http://dx.doi.org/10.1109/MIC.2003.1167344.

7 http://glinden.blogspot.com/

Figure 12.7 Screenshot of recommendations to a user at Amazon.com

http://dx.doi.org/10.1109/MIC.2003.1167344
http://glinden.blogspot.com/

375Real-world solutions
Amazon makes recommendations based on information from multiple contexts,
including

■ Short term information —Recommendations based on recent search terms and
item browsing history, as shown in figure 12.9.

■ Items available in the shopping basket.
■ Purchasing history —Recommendations based on past purchasing history, as

shown in figure 12.7. The system also uses available information about the user
to send out targeted emails suggesting recommended items.

The recommendation system at Amazon has a number of challenges:

■ Large number of items and users —The system contains huge amounts of data with
tens of millions of customers and millions of distinct catalog items.

■ Performance and scalability —Results need to be returned within half a second.
There are a very large number of transactions—for example, on Decem-
ber 10, 2007,8 which was one of Amazon’s strongest days, customers ordered
more than 5.4 million items, or 62.5 items per second.

8 http://phx.corporate-ir.net/phoenix.zhtml?c=97664&p=irol-newsArticle&ID=1089861&highlight=

Figure 12.8 To help the recommendation engine at Amazon, a user can rate an item and/or remove
items from consideration.

Figure 12.9 Recommendations based on browsing history

http://phx.corporate-ir.net/phoenix.zhtml?c=97664&p=irol-newsArticle&ID=1089861&highlight=

376 CHAPTER 12 Building a recommendation engine
■ Limited information for new customers —New customers may have purchased or
rated only a few items. Older customers may have purchased or rated a large
number (thousands) of items.

■ Responsiveness to new information —The algorithm must respond immediately to
new information from the customer.

As described in section 12.1.2, Amazon uses an item-based approach, where related
items for an item are used for recommendations. This also means that all users get the
same list of items as recommended items when they look at a particular item. Given
the large number of users9 and items, it was found that implementing a typical k-near-
est neighbor search ran into severe performance and scalability issues. It was deemed
that reducing the dimensionality of the search space—by clustering and partitioning
items, or by discarding most popular and unpopular items—would degrade the rec-
ommendation quality. Again, from a performance and scalability point of view, a con-
tent-based approach for recommendations was not used—for users with thousands of
purchases, you would need to combine the term vectors across all instances and query
the catalog for related items.

 The item-to-item collaborative filtering algorithm implemented by Amazon scales
independent of the number of users, and develops the expensive item-to-item table
offline. During runtime computing, the list of recommended items is simply a table
lookup. You can compute the item-to-item similarity table by iterating over the user-
item purchase matrix (similar to table 12.1), but the following iterative algorithm pro-
vides a better utilization of memory and computing resources:

■ Assume that there are n items and a n x n matrix with items corresponding to
rows and columns. Iterate the following steps across all items.

■ For a given item (parent item), iterate over all customers who have bought the
particular item. For each item purchased (child item) by the customer, incre-
ment the count for that item—this is stored in the child item row and parent
item column.

At the end of the iteration, to find related items for a the parent item, simply go to the
parent item column and retrieve the items in the order of their counts.

 A simple example helps illustrate the process. Table 12.7 contains the purchasing
pattern for four customers in a catalog with four items. To keep things simple, we
ignore modifications to the matrix to reflect the frequency of purchase for the four
items (idf).

9 Even at 10 million users and 1 million items

Item 1 Item 2 Item 3 Item 4

User 1 1 1

User 2 1 1
Table 12.7 Sample data for
iterative item-to-item algorithm

377Real-world solutions
Applying our algorithm should result in the item-to-tem matrix shown in Table 12.8.
As shown in the table, the items most related to Item 1 are Item 3, followed by Item 2.

Once the item-to-item matrix has been computed offline, the recommended items are
determined using the related items for each item and combining the scores across all
instances.

 The item-to-item recommendation algorithm used by Amazon is one of the sim-
plest collaborative filtering algorithms, which works well and scales to huge amounts
of data.

12.4.2 Google News personalization

Google News (news.google.com) is a computer-generated news site that aggregates
headlines from more than 4,500 news sites, clusters them into related stories, and dis-
plays it all in a personalized manner for a user. Figure 12.10 shows a typical news page
for a logged-in user.

 Google provides personalized recommendations to users who opt in to the search
history feature provided by various Google web sites. As a part of the search history,
Google records search queries made by the user along with a list of news articles vis-
ited. When a user has adequate history of news items clicked, the site recommends
news stories of interest to the user in two sections. The first is the Recommended for
youremailaddress section in the center of the page, just below the Top Stories section.
The second place is the Recommended link on the left side, just below the Top Stories
link, where the user can get a larger list of recommended items. An example of this
page is shown in figure 12.11.

 Google News is a good example of building a scalable recommendation system
for a large number of users (several million unique visitors in a month) and a large
number of items (several million new stories in a two-month period) with constant
item churn. This is different from Amazon, where the rate of item churn is
much smaller.

User 3 1 1 1

User 4 1 1

Item 1 Item 2 Item 3 Item 4

Item 1 - 1 2

Item 2 1 - 1 1

Item 3 2 1 - 1

Item 4 1 -

Item 1 Item 2 Item 3 Item 4

Table 12.8 Item-to-item matrix

Table 12.7 Sample data for iterative
item-to-item algorithm (continued)

378 CHAPTER 12 Building a recommendation engine
The content of this section is drawn from a paper10 published on this topic and a talk11

given by Mayur Datar from Google.

10 Das, A. S., Datar, M., Garg, A., and Rajaram, S. 2007. Google news personalization: scalable online collabora-
tive filtering. In Proceedings of the 16th international Conference on World Wide Web (Banff, Alberta, Canada,
May 08 - 12, 2007). WWW ‘07. ACM, New York, NY, 271-280. DOI= http://doi.acm.org/10.1145/
1242572.1242610.

11 Slides and video can be obtained from http://sfbayacm.org/events/2007-10-10.php.

Recommended Stories

Search History,
Signed In

Figure 12.10 Google News with recommended stories using the user’s web history

Figure 12.11 Personalized news stories for a logged-in user

http://doi.acm.org/10.1145/1242572.1242610
http://doi.acm.org/10.1145/1242572.1242610
http://sfbayacm.org/events/2007-10-10.php

379Real-world solutions
Google decided to use collaborative filtering to build the recommendation system,
mainly due to the availability of data from Google’s large user base, and the advantage
that the same collaborative filtering approach could be applied to other application
domains, countries, and languages. A content-based recommendation system perhaps
may have worked just as well, but may have required language/section-specific tweak-
ing. Google also wanted to leverage the same collaborative filtering technology for
recommending images, videos, and music, where it’s more difficult to analyze the
underlying content.

 There are a number of things that are of interest to us in this case study:

■ High churn in items—One of the unique challenges for the news site has been
the high rate of churn associated with the news stories—news stories change
every 10–15 minutes. This is unlike our case study of Amazon, where the rate of
churn isn’t as high. The rapid change in the item set makes it difficult to com-
pute a model representation for item-to-item, since computing that would
probably take a few hours, and the news would be obsolete by that time.

■ Noisy ratings—A user clicking on a story is used as a noisy positive vote for that
story. A click is noisier than an explicit 1–5 star rating (see section 2.3) or treating
a purchase as a positive vote. As discussed in sections 2.3.4 and 2.4.2, a click on
a story corresponds to a rating of 1, while a non-click corresponds to a 0 rating.

■ Instant gratification—The system incorporates user clicks instantly in its recom-
mendations, thus providing instant gratification to the user.

■ High performance requirements—Google has a high performance requirement for
the recommendation system—typically the recommendation engine needs to
provide a recommendation within a few hundred milliseconds.

The problem of recommending news stories to a user can be modeled into a standard
collaborative filtering user-item table, as shown in table 12.1. Here, an item is a news
story, while rows are users. The dimensionality of m and n is a few million. The matrix
is sparse, where a typical user may have clicked on a few stories, while some users may
have clicked on hundreds of stories. Google’s approach focuses on algorithms that are
scalable and combines three different algorithms—one is a memory-based algorithm
while the other two are model-based algorithms. The recommendation engine weighs
the scores for each recommended item across the three approaches. The memory-
based algorithm uses the related-item approach. Here we use the covisitation algo-
rithm (similar to Amazon’s algorithm), where users are clustered together based on
which pages they’ve visited. The other two algorithms, MinHash and PLSI, group users
into clusters, and recommend stories clicked by one user to others in the same cluster.

 User clustering is a batch process that should be done offline and run periodically
to not affect the performance of the regular application. While the cluster story-
counts are maintained in real-time, new users that haven’t been clustered in the previ-
ous clustering run are recommended stories based on a covisitation algorithm.
Google leverages BigTable12 and MapReduce to scale the algorithms to the large vol-
ume of data. Next, we briefly describe the three algorithms used.

12 http://labs.google.com/papers/bigtable.html

http://labs.google.com/papers/bigtable.html

380 CHAPTER 12 Building a recommendation engine
MEMORY-BASED ALGORITHM: COVISITATION

The first algorithm, known as covisitation, uses an item-based approach to compute
recommended news items. Similar to Amazon and covered in the previous section,
the algorithm displays items that have been viewed by other users who have viewed a
given item.

 Conceptually, the algorithm is simple, and works as follows. Consider a window of
time, typically a few hours. Two stories that have been visited by the same user during
this period of time are said to have been covisited. Associated with each user is a list of
items that have been visited by the user in the given window of time; we call this the
user’s click history. For each item, the system keeps a running count of how many times
this story has been covisited with each other story. If two stories have never been covis-
ited then this count is 0. When a user clicks on a new item, the system uses the user’s
click history and updates the covisitation count for this new item and each item in the
user’s click history. Given an item, related items are thus other items that have the
largest covisitation numbers associated with them. The algorithm also takes into
account the temporal nature of the clicks, and discounts the count based on the age
of the click and story. These counts are also normalized to a 0 and 1 scale. To generate
a list of candidate items for a user, the system uses the user’s click history. For each of
the items in the user’s click history, the list of covisited items along with their scores is
retrieved. The scores for the items are added over all items in the user’s click history
set, and the items with the highest summed weight are recommended to the user.
MODEL-BASED ALGORITHMS

Minwise Independent Permutation Hashing (MinHash) is a probabilistic clustering
algorithm that assigns two users to the same cluster, with a probability proportional to
the overlap in items they’ve clicked. A simple similarity function, also known as Jaccard
coefficient, is used to compute the similarity between two users. The Jaccard coefficient,
a number between 0 and 1, is the ratio of number of items that have been covisited by
the two users divided by the total number of unique items that have been visited by
either of the two users. A simple approach is to compute the similarities of the users
with all the other users and recommend stories using these similarities to weigh the
recommendations. However, given the large number of users, this approach isn’t scal-
able. Google therefore uses a sublinear time near-neighbor search technique called
Locality Sensitive Hashing (LSH). The algorithm works as follows. The complete set of
items are randomly arranged. A user is assigned a hash value equal to the index of the
first item that the user has visited in this permutation. This process is repeated a num-
ber of times (10–20) in parallel. The hash value for a user is equal to the sum of the
hash values assigned to the user in each of the runs. Users having the same hash val-
ues are assigned to the same cluster. For scalability and performance, the MinHash
clustering algorithm is implemented as a MapReduce problem.

 PLSI is a collaborative filtering algorithm developed by Hoffmann and is based on
probabilistic latent semantic models. It models users and items as random variables,
where the relationship between users and items is modeled as a mixture distribution.

381Real-world solutions
Hidden variables are used to capture the relationships between the users and the
items. The expectation-maximization algorithm is used to learn the parameters of
the algorithm. For scalability, the algorithm was reformulated to fit into the Map-
Reduce paradigm.

 Experiments on the live Google site have shown better click-through rates for
recommended stories than those for the top stories for the day. The large dimen-
sionality for items and users along with a high degree of item churn makes this case
study interesting.

 Lastly, let’s look at Netflix.

12.4.3 Netflix and the BellKor Solution for the Netflix Prize

In November 2007, a little over a year after announcing a million-dollar prize for the
winning entry in a contest to improve the prediction accuracy of movie ratings by 10
percent, Netflix awarded the first progress prize of $50,000 to BellKor,13 a group of
researchers at AT&T Labs. The BellKor (a.k.a. KorBell) team consisting of Yehuda
Koren, Robert Bell, and Chris Volinsky, improved on the Netflix recommendation sys-
tem by 8.43 percent, a little short of the 10 percent required to achieve the million
dollar prize. Of course, this improvement is on a test dataset that Netflix provided as a
part of the contest, and not integrated into Netflix’s recommendation engine yet. The
contest in its first year attracted more than 27,000 contestants on more than 2,550
teams from 161 countries.

 Netflix believes that any improvements in their recommendation engine will pro-
vide them with a competitive advantage. Opening up the process of finding a better
recommendation engine with a public contest is yet another example of collective
intelligence, where the collective efforts of other users is being used to improve the
recommendation engine.

 Before we go on to the BellKor solution, it’s useful to look at Netflix’s recommen-
dation engine. This part of the section draws from a talk given by Jim Bennett, VP of rec-
ommendation systems, at the Recommender06.com conference14 in September 2006.

 When a user signs up at Netflix, the user is urged to rate movies in an attempt to
learn the user’s tastes. Netflix’s recommendation engine, Cinematch, uses an item-to-
item algorithm (similar to Amazon) with a number of heuristics that aren’t disclosed
to the public. The offline computation of the item-to-item matrix takes two days to
train. To solve the problem of “cold startup” for new titles, items are set up manually;
this manual setup is retired over a period of time. Figure 12.12 shows a typical recom-
mendation screen that’s shown to a user. Here, movies similar to the movie “Babel”
are being recommended to the user.

 Figure 12.13 shows the home page for a user, which shows the user’s recom-
mended movies.

13 http://www.research.att.com/~volinsky/netflix/
14 http://blog.recommenders06.com/wp-content/uploads/2006/09/bennett.pdf

http://www.research.att.com/~volinsky/netflix/
http://blog.recommenders06.com/wp-content/uploads/2006/09/bennett.pdf

382 CHAPTER 12 Building a recommendation engine
Figure 12.12 Movies
related to a movie being
recommended at Netflix

Figure 12.13 Home
page for a user at Netflix
showing the user’s
recommended movies

383Real-world solutions
The current Netflix recommendation system uses about 2 billion movie ratings that
have been collected from more than 10 million customers. However, Netflix estimates
that by sometime around 2010 to 2012, it will

■ Have more than 10 billion ratings
■ Generate 10 million ratings a day
■ Make 5 billion recommendations a day
■ Have more than 20 million customers

NETFLIX COMPETITION

The learning dataset for the competition consists of more than 100 million anony-
mous movie ratings, on a scale of one to five stars, made by 480,000 users on 17,770
movies. Note that the user-item dataset for this problem is sparsely populated, with
nearly 99 percent of user-item entries being zero. The distribution of movies per
user is skewed. The median number of ratings per user is 93. About 10 percent of
the users rated 16 or fewer movies, while 25 percent of the users rated 36 or fewer.
Two users rated as many as 17,000movies. Similarly, the ratings per movie are also
skewed, with almost half the user base rating one of the popular movies (Miss Con-
geniality). About 25 percent of the movies had 190 or fewer ratings associated with
them. A handful of movies were rated fewer than 10 times. The dataset doesn’t con-
tain any personal identifiable information. It contains user ID, movie titles, star rat-
ings, and dates—there are no text reviews in the dataset. In the absence of any
content associated with the movies, there’s no option but to apply a collaborative-
based approach to analyze the data.

 The Netflix competition doesn’t take into account speed of implementation or scal-
ability of the approach used. It simply focuses on the quality of the recommendation sys-
tem in terms of minimizing the error between the user rating and the predicted rating.
The Netflix data doesn’t contain much information to allow the use of a content-based
approach; it’s for this reason that teams focused on collaborative-based techniques.

 The winning team, BellKor, spent more than 2,000 combined hours poring
through data to find the winning solution. The winning solution was a linear combi-
nation of 107 sets of predictions. Many of the algorithms involved either nearest
neighbor method (k-nearest neighbor) or latent factor models such as SVD/factoriza-
tion and Restricted Boltzmann Machines (RBMs).15

 The winning solution uses k-NN to predict the rating for a user using both the
Pearson-r correlation and cosine methods to compute the similarities. Similar to our
discussion in section 12.3.1, they found that it was useful to remove item-specific and
user-specific biases in the computation. Latent semantic models (see sections 12.3.4
and 12.3.5) were also used widely in the winning solution. RBMs are stochastic neural
networks that contains two layers. The first layer corresponds to the observed ratings,
while the second layer is hidden and is connected to the first layer.

15 See http://www.scholarpedia.org/article/Boltzmann_machine and Google Tech Talk “Next Generation of
Neural Networks” by Geoffrey Hinton of University of Toronto, http://www.youtube.com/
watch?v=AyzOUbkUf3M.

http://www.scholarpedia.org/article/Boltzmann_machine
http://www.youtube.com/watch?v=AyzOUbkUf3M
http://www.youtube.com/watch?v=AyzOUbkUf3M

384 CHAPTER 12 Building a recommendation engine
 The BellKor team found that it was important to utilize a variety of models that
complemented each others’ shortcomings. None of the models by itself could get the
BellKor team to the top of the competition. The combined set of models achieved an
improvement of 8.43 percent over Cinematch, while the best model—a hybrid of
applying k-NN to output from RBMs—improved on the result by 6.43 percent. The
biggest improvement by LSI methods was 5.1 percent, with the best pure k-NN model
scoring below that. (K for the k-NN methods was in the range of 20 to 50.) The
BellKor team also applied a number of heuristics to further improve the results.

 The BellKor team provides a number of recommendations on what’s needed to
build a winning solution for a competition:

■ Combining complementary models helps improve the overall solution. Note
that a linear combination of three models, one each for k-NN, LSI, and RBM,
would have resulted in fairly good results—an improvement of 7.58 percent.

■ You need a principled approach to optimizing the solution.
■ The key to winning is to build models that can predict accurately where there’s

sufficient data, without over-fitting in the absence of adequate data.

The Netflix competition—the data, the prize money, and the fame factor—have gen-
erated a large amount of interest in the field of collaborative filtering. Teams have col-
laborated with each other and have published their solutions, allowing others to build
on their work. Figure 12.14 shows the leaderboard for the competition as of early

Figure 12.14 A screenshot of the Netflix leaderboard as of early 2008
(http://www.netflixprize.com/leaderboard)

http://www.netflixprize.com/leaderboard

385Summary
August 2008. Note that the best score is an improvement of 9.15 percent over the
benchmark result. The million-dollar question is, Will someone come up with the solu-
tion that’s good enough to surpass the 10 percent improvement mark? Only time will
tell, but given the interest and efforts being made, it’s perhaps only a question of time.

 In this section, we’ve covered the solutions for three large-scale recommendation
systems—Amazon, Google News, and Netflix. By now, you should understand what a
recommendation engine is, and how it can be used and built. In your application, you
should be able to start with building perhaps a simple content-based item-to-item rec-
ommendation engine and then augment it with a collaborative-based approach. This
should help you to personalize your application for every user. The challenge with
personalization and building recommendation systems is to find the right balance
between the delta improvement in quality and the additional time the user needs to
wait for the response. I’ve found the strategy of starting with something simple and
gradually building on top of it over time, along with lots of asynchronous pre-compu-
tation, to work well in most cases.

12.5 Summary
One of the best ways to personalize a site for a user is to use a recommendation
engine. There are two main approaches to building a recommendation engine: con-
tent-based and collaborative-based. In content-based analysis, similar content is rec-
ommended by computing the similarity in term vectors between various items. But
content-based algorithms can’t determine the quality of an item being recom-
mended. For this, we need to use a collaborative approach. In collaborative filtering,
each item is treated as black box, and user interactions with the item are used to com-
pute similarities. Collaborative approaches are language-agnostic and are particularly
suited for analyzing images, video, and music that might not have any content associ-
ated with them.

 Approaches to building recommendation systems can be further divided into item-
based and user-based analysis. In item-based analysis, items that are similar to items of
interest are recommended to the user, while in user-based analysis, first similar users
to a user are found, and them items liked by those users are recommended.

 The recommendation problem uses a user-item matrix containing rating informa-
tion (purchasing/voting/click-through) for cell values. In this matrix, a row corre-
sponds to a user, while each column corresponds to an item. This matrix is typically of
large dimension and sparse. This large dimensional matrix may be approximated to
lower dimensions using singular value decomposition. The k-nearest neighbor algo-
rithm determines the k closest users to predict the ratings for a user.

 We also looked at three well-known, large-scale recommendation systems: Ama-
zon.com, Google News personalization, and Netflix.

 Using the concepts developed in this book, you should now be able to apply collec-
tive intelligence to your application. Good luck at providing a personalized experi-
ence to your users.

386 CHAPTER 12 Building a recommendation engine
12.6 Resources
 ACM Transactions on Computer-Human Interaction (TOCHI) Special Section on

Recommender Systems. Volume 12, Issue 3 (September 2005).
 Adomavicius, Gediminas and Alexander Tuzhilin. “Toward the Next Generation of

Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions,”
IEEE Transactions on Knowledge and Data Engineering, Vol. 17, no. 6, pp. 734–749.
June, 2005.

 Bell, Robert and Yehuda Koren. “Improved Neighborhood-based Collaborative Filtering.”
http://public.research.att.com/~yehuda/pubs/cf-workshop.pdf

 ———“Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation
Weights.” IEEE Conference on Data Mining (ICDM’07). 2007, IEEE.

 ———“Improved Neighborhood Based Collaborative Filtering.” KDD 2007 Netflix Competi-
tion Workshop. http://public.research.att.com/~yehuda/pubs/cf-workshop.pdf

 Bell, Robertl, Yehuda Koren, and Chris Volinsky. “The BellKor Solution to Netflix Prize.” 2007.
http://www.research.att.com/~volinsky/netflix/ProgressPrize2007BellKorSolution.pdf
and http://www.netflixprize.com/assets/ProgressPrize2007_KorBell.pdf

 ———“Modeling relationships at multiple scales to improve accuracy of large recommender
systems.” http://portal.acm.org/citation.cfm?id=1281192.1281206

 ———“Chasing $1,000,000: How We Won The Netflix Progress Prize.” ASA Statistical and
Computing Graphics Newsletter. Volume 18, Number 2, December 2007. http://
stat-computing.org/newsletter/v182.pdf

 BellKor home page. http://www.research.att.com/~volinsky/netflix/
 Berry, M. W., S. T. Dumais, and G. W. O’Brien. “Using linear algebra for intelligent information

retrieval.” SIAM Review 37(4):573–595. 1995. http://citeseer.ist.psu.edu/
berry95using.html

 Breese, John, David Heckerman, and Carl Kadie. “Empirical Analysis of Predictive Algorithms
for Collaborative Filtering.” Proceedings of the 14th Annual Conference on Uncertainty
in Artificial Intelligence (UAI-98), pgs 43-52. 2002. Morgan Kaufmann.

 Chang, Fay, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Bur-
rows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. “Bigtable: A Distributed Stor-
age System for Structured Data.” OSDI ’06: Seventh Symposium on Operating System
Design and Implementation, Seattle, WA. November, 2006. http://209.85.163.132/
papers/bigtable-osdi06.pdf

 COFE: Collaborative Filtering Engine. http://eecs.oregonstate.edu/iis/CoFE/
 Cofi: A Java-based collaborative filtering library. http://www.nongnu.org/cofi/
 Das, Abhinandan S., Mayur Datar, Ashutosh Garg, and Shyam Rajaram. “Google news personal-

ization: scalable online collaborative filtering.” In Proceedings of the 16th international
Conference on World Wide Web (Banff, Alberta, Canada, May 08–12, 2007). WWW ’07.
ACM, New York, NY, 271-280. DOI= http://doi.acm.org/10.1145/1242572.1242610

 Deshpande, Mukund and George Karypis. “Item-based top-n recommendation algorithms.”
ACM Transactions on Information Systems, 22(1):1--34, 2004. http://
citeseer.ist.psu.edu/article/deshpande04item.html

 Fleder, Daniel M. and Kartik Hosangar. “Recommender systems and their impact on sales diver-
sity.” Proceedings of the 8th ACM conference on Electronic commerce. 2007. http://
portal.acm.org/citation.cfm?id=1250910.1250939

 Hoffman, Thomas. “Latent semantic models for collaborative filtering.” ACM Transactions on
Information Systems (TOIS) , Volume 22, Issue 1 (January 2004).

 The Homepage of Nearest Neighbors and Similarity Search. Maintained by Yury Lifshits.
http://simsearch.yury.name/tutorial.html

http://public.research.att.com/~yehuda/pubs/cf-workshop.pdf
http://public.research.att.com/~yehuda/pubs/cf-workshop.pdf
http://www.research.att.com/~volinsky/netflix/ProgressPrize2007BellKorSolution.pdf
http://www.netflixprize.com/assets/ProgressPrize2007_KorBell.pdf
http://portal.acm.org/citation.cfm?id=1281192.1281206
http://stat-computing.org/newsletter/v182.pdf
http://stat-computing.org/newsletter/v182.pdf
http://www.research.att.com/~volinsky/netflix/
http://citeseer.ist.psu.edu/berry95using.html
http://citeseer.ist.psu.edu/berry95using.html
http://209.85.163.132/papers/bigtable-osdi06.pdf
http://209.85.163.132/papers/bigtable-osdi06.pdf
http://eecs.oregonstate.edu/iis/CoFE/
http://www.nongnu.org/cofi/
http://doi.acm.org/10.1145/1242572.1242610
http://citeseer.ist.psu.edu/article/deshpande04item.html
http://citeseer.ist.psu.edu/article/deshpande04item.html
http://portal.acm.org/citation.cfm?id=1250910.1250939
http://portal.acm.org/citation.cfm?id=1250910.1250939
http://simsearch.yury.name/tutorial.html

387Resources
 IEEE Intelligent Systems Special Issue on Recommender Systems. vol. 22(3), 2007International
Journal of Electronic Commerce Special Issue on Recommender Systems. Volume 11,
Number 2 (Winter 2006-07).

 Johnson, Aaron. “Using Lucene and MoreLikeThis to Show Related Content.” Nov. 2006.
http://cephas.net/blog/2006/11/14/using-lucene-and-morelikethis-to-show-related-con-
tent/

 KDD Cup and Workshop (KDD’07). ACM Press (2007).
 Kim, Juntae. “Effect of Dimensionality Reduction in Recommendation Systems.” AI Workshop,

2002. http://ai.dgu.ac.kr/seminar/pds/AIWorkshop2002.ppt
 Lemire, Daniel and Anna Maclachlan. “Slope One Predictors for Online Rating-Based

Collaborative Filtering.” Proceedings of SIAM Data Mining (SDM ’05), 2005. http://
www.daniel-lemire.com/fr/abstracts/SDM2005.html

 Linden, Greg. Geeking with Greg. Blog. http://glinden.blogspot.com/
 Linden, Greg, Brent Smith, and Jeremy York. “Amazon.com Recommendations: Item-to-Item

Collaborative Filtering.” IEEE Internet Computing. 7, 1 (Jan, 2003), 76-80. DOI= http://
dx.doi.org/10.1109/MIC.2003.1167344

 Porter, Joshua. “Watch and Learn: How Recommendation Systems are Redefining the Web.”
2006. http://www.uie.com/articles/recommendation_systems/

 “The Present and Future of Recommender Systems.” September 12-13, 2006. Bilbao, Spain.
http://www.mystrands.com/corp/summerschool06.vm

 Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and
data mining (KDD’07). ACM Press (2007).

 “Reinforcing the Blockbuster Nature of Media: The Impact of Online Recommenders.”
http://knowledge.wharton.upenn.edu/article.cfm?articleid=1818

 Salakhutdinov, Ruslan, Andriy Mnih, and Geoffrey Hinton. “Restricted Boltzmann machines
for collaborative filtering.” In Proceedings of the 24th International Conference on
Machine Learning (Corvalis, Oregon, June 20 - 24, 2007). Z. Ghahramani, Ed. ICML ’07,
vol. 227. ACM, New York, NY, 791-798. DOI= http://doi.acm.org/10.1145/
1273496.1273596

 Sarwra, Badrul, George Karypis, Joseph Konstan, and John Riedl. “Item-based collaborative fil-
tering recommendation algorithms.” Proceedings of the 10th International World Wide
Web Conference (WWW10), Hong Kong, May 2001. http://citeseer.ist.psu.edu/
sarwar01itembased.html

 ———“Application of dimensionality reduction in recommender systems—a case study.” In
ACM WebKDD Workshop, 2000. http://citeseer.ist.psu.edu/sarwar00application.html

 SVD Recommendation System in Ruby. 2007. http://www.igvita.com/blog/2007/01/15/
svd-recommendation-system-in-ruby/

 Taste: Collaborative filtering for Java. http://taste.sourceforge.net/
 Taste. http://code.google.com/soc/2007/taste/about.html
 Yahoo Launchcast. http://new.music.yahoo.com/

http://cephas.net/blog/2006/11/14/using-lucene-and-morelikethis-to-show-related-content/
http://cephas.net/blog/2006/11/14/using-lucene-and-morelikethis-to-show-related-content/
http://ai.dgu.ac.kr/seminar/pds/AIWorkshop2002.ppt
http://www.daniel-lemire.com/fr/abstracts/SDM2005.html
http://www.daniel-lemire.com/fr/abstracts/SDM2005.html
http://glinden.blogspot.com/
http://dx.doi.org/10.1109/MIC.2003.1167344
http://dx.doi.org/10.1109/MIC.2003.1167344
http://www.uie.com/articles/recommendation_systems/
http://www.mystrands.com/corp/summerschool06.vm
http://knowledge.wharton.upenn.edu/article.cfm?articleid=1818
http://doi.acm.org/10.1145/1273496.1273596
http://doi.acm.org/10.1145/1273496.1273596
http://citeseer.ist.psu.edu/sarwar01itembased.html
http://citeseer.ist.psu.edu/sarwar01itembased.html
http://citeseer.ist.psu.edu/sarwar00application.html
http://www.igvita.com/blog/2007/01/15/svd-recommendation-system-in-ruby/
http://www.igvita.com/blog/2007/01/15/svd-recommendation-system-in-ruby/
http://taste.sourceforge.net/
http://code.google.com/soc/2007/taste/about.html
http://new.music.yahoo.com/

index
Numerics

23andme.com 345

A

abstraction, content types 83
accessing DME 202–204
accuracy of predictive

model 178, 305
activation function 297–298
addIndexes 326
ad-generation engine 8
adjusted cosine 354
adjusted cosine-based

similarity 45, 363
advertisements 8, 10, 12–13,

208, 237–238, 276
advertising 8
age 351

attribute 32
agglomerative 253, 262
AJAX 11, 89, 289
Alexa 89, 146
Algorithm. See Waikato Environ-

ment for Knowledge Analy-
sis (WEKA)

algorithms, key
learning 178–181

AlgorithmSettings 195, 199,
269–270, 301, 303

Amazon 10, 18, 29, 34, 37, 39,
350, 365, 373

Analyzer 312
See also Lucene

analyzers 94–95, 309

analyzeText 232, 234
analyzing content 207–221
AOL 150
Apache

Foundation 339
Hadoop 339
Jakarta Commons 120
Xerces-J 120

APIs, JDM 193–204
application phase 274
application server 85
ApplyTask. See Java Data Mining

(JDM)
apriori 181, 188, 286
architecture 21

content integration 85
tagging 51, 62–63, 66

arrow 285
articles 7, 14–15, 18–19, 23,

51–52, 60, 80–81, 83
artificial intelligence 11, 176
Asian languages 210
association algorithms 177
association rules 275, 362
asynchronous 21–22
asynchronously 275
Atom Publishing Format 110,

144
Attribute 176–182, 184–191,

194–196
attribute 177, 274–275, 362

categorical 27
nominal 27
normalized 27
numerical 27
ordinal 27

attribute selection 181
attributes 27, 176–178

nominal 177
numerical 176
ordinal 176

AttributeType 197
attrition rates 10
authority 148, 163
auto-complete 338
automated indexers 146
average-link 253
averages 41

B

back-propagation 297–299
BallTree 366
banner advertisements 374
base pairs 345
batch process 379
Bayes’ theorem 180, 287

Bayes’ Rule 282
Bayesian algorithms 178

Bayesian belief networks
(BBN) 178, 275, 285, 287,
289, 373

Bayesian clustering 363
BBN. See Bayesian belief

networks (BBN)
Bell, Robert. See BellKor
BellKor 381–385
Bennett, Jim 381
BFS 148
Bialecki, Andrzej 339
BigTable 379
binning 177
389

390
bioinformatics 345
biological relationships 346
black box 298, 354, 363
blob 91
blog comments 88
blog entries 14, 51, 88, 206,

244–246, 260, 262–263,
267, 275

clustering 241–261
retrieving from

Technorati 244–247
BlogAnalysisDataItem 244

See also clustering
BlogDataSetCreatorImpl

262, 287, 313
Blogdigger 108, 110–111, 124,

139–140, 142–144
BlogEntry 87, 113
Blogflux 111
bloggers 107, 109–110
Bloglines 108, 111, 124, 135,

137–139, 144
blogosphere 9, 16, 22, 87, 89,

104, 107–111
searching 111–116

BlogQueryParameter 112–113,
117, 119–121, 131, 136

BlogQueryResult 112–119,
121–123, 125, 134, 137, 143

blogs 9, 52, 83–90, 103–104,
108–111

blog-tracking companies 111
searching 111–116

BlogSearcher 113
See also blogs

BlogSearchExample 313
BlogSearchResponseHandler

112, 115–116, 121, 123–124,
131, 136–137, 139

blog-tracking companies 111
Bloomberg.com 345
bookmark 14–15, 37, 47, 51, 64,

66, 80, 342
bookmarking 8–9, 15, 28,

36, 351
BooleanQuery 356

See also Lucene
boost factor 328, 357
boosting 311, 328
bots 146
breadth-first search 148
buckets 27
buildDataPhysicalDataSet. See

Java Data Mining (JDM)
building, intelligent

crawler 152–164

BuildSettings 195, 269
business intelligence 176

C

C4.5 281
C5.0 281
caching 21
CachingWrapperFilter 334–335
Carrot2, intelligent search 342
CART 281
CARuleMiner. See Waikato Envi-

ronment for Knowledge
Analysis (WEKA)

catalog 375
CategorySet 197
cause-effect. See Bayesian belief

networks (BBN)
.CFS extension 320
Charkrabarti 149
CharTokenizer 210
chat logs 84
chat sessions 14
child intelligence 289
child nodes 373
Chinese language 354
chromosomes 345
Church, George 345
churn in items 379
CI. See collective intelligence

(CI)
Cinematch 381, 384
circle of influence 5, 18
classes

Lucene 311–312
search 116–127

classification 274–275, 362
See also regression

classification terms 83–84, 104
ClassificationModel 305

See also Java Data Mining
(JDM)

ClassificationSettings 301, 304
ClassificationTestTask 305
classifieds 84
clickstream 37, 241
click-through 241, 261, 374

rates. See decision trees
cloaking 149
cluster 257

See also Java Data Mining
(JDM)

Clusterer 242, 244, 257,
261–267

clusterer, creating 265–266

ClusterEvaluation 262
See also Waikato Environment

for Knowledge Analysis
(WEKA)

clustering 22, 28–29, 32, 240,
242–244, 275, 362

evaluating results 266–268
high-dimension data 261
sparse data 261
with JDM 268–272
with WEKA 262–268

clustering model 198, 262, 269
ClusteringModel 268–272
ClusteringSettings 270
Clusty, intelligent search 344
CNET Networks 339
Cofe 369
Cofi 369
collaborative analysis 353–354
collaborative approach 93
collaborative filtering 20–21, 29,

363–373
model-based 363
probabilistic 373

collaborative-based 20, 52
Collective Intelligence 30
collective intelligence (CI) 30,

54, 59, 83–84, 86, 89, 91–92,
94, 100–102, 169

benefit 9
classification 14–18
definition 4, 6
example 7–9
extracting 93–102
See also classification

collective power 90
commercial crawlers 163
commit lock 324
community 12
Compass 339, 341
Compete 146
complete-link 253
complex-event-processing 24
composite 362
CompositeContentType 103
CompositeContentTypes 92
compound files 315

See also Lucene 320
computational biology 345
computeInitialDistances 258
computing similarities 31
conditional independence. See

Naïve Bayes and Bayesian
belief networks

conditioning methods 287
connecting with other users 349

391
Connection 201–204, 270–272,
302–305

ConnectionFactory 201–204
ConnectionMetaData 201
ConnectionSpec 203
consists 27
content 82, 85, 103

analyzing 207–221
analyzing example 93
classification 83, 85
external 8
integration 85–86
personalizing 362
retrieving 159–160
types 83–93, 102–103

content aggregation 147
content visited 28
content-based 20, 52
content-based analysis 352–363

recommendation
engine 359–362

ContentBasedBlogRecoEngine
360

content-centric applications
12, 50

conversion rates 374
core competency 12
corporate website 87
correlation coefficient 193
correlation matrix 363
cosine 34, 41–43, 45–47, 354
cosine-based similarity 363
CoverTree 366
co-visitation 379–380
crawling 146–152

deep 150
process 147–149

crawling the web 145
createInitialSingleItemClusters

258
creating search index 314–317
cross-validation 182, 266, 298
crowd sourcing 90
Cuil 347
Cutting, Doug 151, 164
cycles 286–287

D

DAG. See directed acyclic graph
(DAG)

data aggregator service 22
data analysis 176
data collection 342

data mining 4, 16–18, 175
core concepts 176–182
example 362
JDM 193–204
process 181–182
vendors 181
WEKA 182–193

Data Mining Group (DMG) 204
data mining tools vendors 181
data search 345–347

intelligent search 341
data, learning dataset 263–265
database 62–64, 66–70,

78–79, 81
data-based search 346
Datar, Mayur 378
DataSetApplyTask 200
DataSetCreator 242
datasets 32, 181, 183, 200, 241,

243, 279–280
DayPop 111
DBScan 268
deadlocks 25
decision trees 275–281

See also classification 178
decodeme.com 345
deep web 150
degree of belief 287
del.icio.us 15, 36
densely populated 241
derived intelligence 14, 16
detecting phrases 100–102,

214–218
diagonal matrix 370
dictionary of tags 8
Digg 15, 36, 40
dimensionality

reduction 369–373
dimensions 31
directed acyclic graph

(DAG) 171, 285
directed graph 171
Directory 311
diversity 363
DME, accessing 202–204

See also Java Data Mining
(JDM)

DMG. See Data Mining Group
(DMG) 204

DNA 345
DNA chips 345
Document 311

See also Lucene
document frequency 359
doorway pages 149

dot product 34, 42–43, 46–47,
247, 251, 253, 328, 353, 365

dot-com era 3
Dryad 169–171
dynamic navigation 8, 14, 51,

54, 56, 58, 69, 80

E

eBay 83
Eclipse 186
eigen value 370, 372
Einstein 11
EM. See expectation

maximization (EM)
email 36, 351

chain 90
filtering 275
spam. See classification

embedding intelligence 21
English language 354
Epinions.com 39
EqualInverseDocFreqEstimator

231
See also text analysis

ethics 107
Eurekster 344
Evaluation 189, 192
event-driven 25
exceptions handling 116
ExecutionHandle 200–201,

271, 304
ExecutionStatus 201, 271, 304
expectation maximization

(EM) 261, 265
experimental data search 346
Experimenter 184
Explanation 317–318, 330
explicit information 7, 14
exploitation 351
exploration 351
Explorer 184
ExportTask 200
external content 8–9
extract phrases 94
extracting URLs 160–161

F

Fair Isaac 193
fame factor 384
FAQ 90
FastVector 186–193, 263,

290–291
FeedForwardNeuralNetSettings

 301

392
Field 314–316
FieldQueryParser 333
Fields 316
file-based locking 324
Filter 210–211
filter 6
filtering 334–335

See also Lucene
firewall 85, 104
Flickr 50, 57
flyweight pattern 224
focused crawling 147–150,

171, 344
folders 37
folksonomies 8, 56, 60
FontSizeComputationStrategy

72
FontSizeComputation-

StrategyImpl 73
forward 36
framework, extending 127
freemium 13
frequency count 27
FSDirectory 312

See also Lucene
fundamental concepts 21, 25
FuzzyQuery. See Lucene

G

Gaussian cluster 298–299
Gaussian distribution 261
Gaussian kernel function 298
gender 351

See also attribute
General Public License

(GNU) 341
genes 345
genetic algorithms 180
genomic sequencing 345
geographic location 83, 351
German 210
GermanAnalyzer 212
GermanStemFilter 210
getBlogDetails 255
getSynonym 215, 217
global warming 84
global-lock system 323
Gmail 56
GNU. See General Public License

(GNU)
Google 29, 59, 111, 128,

144, 354
community-based search

engines 344
data search 345

search results 309
stop word list 213
YouTube 5

Google File System 169
Google News 350, 377–381
Gospodnetic 350
GPL 369
gradient descent algorithm 180
gradient search 297
greedy recommenders 352
groups 83–84, 86–87, 90–93

H

HAC. See Hierarchical Agglom-
erative Clustering (HAC)

hackability 11
Hadoop 146, 164, 169–171
Hakia 345
handling exceptions 116
handling response XML 115
hard-to-replicate data 10
Harvard Medical School 345
harvest from external sites 82
harvest rate 150
hashCode 256
Hatcher 350
HDFS 169
Heritrix 151
Herren, John 58
Hibernate 30, 341
Hibernate search 339, 341
hidden layer 297, 299
hidden nodes 180, 298
hidden unit 298
Hierarchical Agglomerative

Clustering (HAC) 253, 262
hierarchical clustering

241, 253–261
HierarchicalClusteringImpl

253, 257–261
HierCluster 253–260
HierDistance 253–256
high performance 21
high-dimension 32–33
Hinchcliffe, Dion 11
HitCollector. See Lucene
Hits 312

See also Lucene
Hoffman, Kevin 71
Hoffmann 380
home address 276
homonym 54
Hornick, Mark 194
HTMLTagCloudDecorator 236

HTTP 311
requests 21, 24, 85

HTTPS requests 21
Human Genome Project 345
hyper linking 56

I

IB1 366
IBk 366
IBM 193
IceRocket 111
ID3 281
identity matrix 296
IETF 110
if-then rules 275, 306
images 354
immutable 223
implicit information 7, 14
ImportTask 200
incremental indexing 322–324
index

creating 314–317
files 324
modifying 321–322
optimizing

performance 325–327
searching 317–320

indexing 320–327
incremental 322–324
optimizing

performance 325–327
indexing service 310
IndexReader 311
IndexSearcher 312
IndexUpdaterService 323
IndexWriter 311, 315
info gain. See decision trees
information entropy 277
information retrieval 4, 17, 25,

27, 30
infrastructure 240
InitialContext 203
injecting synonyms 214–218
input layer 180, 297–298
installation guide 90
Instance 187–191, 262–264
instant gratification 379
instant messengers 89
integration 85–86
intelligence, extracting 93–102
intelligent crawling 149–150,

152–164
intelligent search 362
interaction history 8, 18

393
inverse document frequency
(idf) 30, 55, 149, 328, 358,
365, 376

inverse of matrix 296
inverse user frequency 365
InverseDocFreqEstimator 222
InverseDocFreqEstimatorImpl

246
inverted text index 320
invisible web 150
is 327
isValidPhrase 215, 217, 220
Item 102
item churn 377
item-based analysis 351–353
Items 37
items 26
item-to-item 61, 353

Amazon 376

J

Jaccard coefficient 380
JAMA 370
Java 30
Java Community Process

175, 193, 205
Java Data Mining (JDM)

176, 193–204, 241, 268,
272, 275, 300–305

accessing DME 202–204
architecture 194
clustering 268
clustering settings 269–270
connections 200
datasets 196
key clustering classes 268–269
key objects 195
tasks 199

Java Web Start 339
javax.datamining 202, 268–271,

300–304
javax.datamining.clustering

195, 268–270
javax.datamining.supervised

195, 300–303
JDBC 201
JDM. See Java Data Mining

(JDM) 272
JDMConnectionExample

202–203
JDMException 201–203
JNDI lookup 203
Johnson, Dave 111
journal entries 206

JSON APIs 339
JSR 247 175, 193–194, 205
JSR 73 175, 193–194, 205
JVM 323

K

k neighbors 365
KDTree 366
kernel function 298, 303
key learning

algorithms 178–181
Keyes, Ken 5
Keyword spamming 149
keywords 82–84, 95, 102
k-fold. See cross-validation
King Ping 111
k-means 241, 299

implementation 247, 249–253
KMeansSettings 269
k-nearest neighbor (k-NN)

363, 365, 376
knowledge repository 90
KnowledgeFlow. See Waikato

Environment for Knowl-
edge Analysis (WEKA)

Koren, Yehuda 381
Kosmix intelligent search 342
KStar 366
KXEN 194

L

language-independent 29
languages 354
large-scale systems 365
latent classes 29
latent Dirichlet allocation 363
latent semantic indexing

(LSI) 80, 369–370
layer 275, 297–299
leaf cluster 260
learning dataset 181, 263–265
learning models 197
learning phase 274
Lemire, Daniel 369
LetterTokenizer. See Lucene
Lexee 345
Libby, Dan 109
life sciences 346
Linden, Greg 374
linear algebra 29
linear model 32
linear regression 180, 295–297

LinearNNSearch 366
Linguistic-based search 341
link spamming 149
Linkdb 166
LinkedIn 12
links, decision tree 179
list 7, 84
list of related items 206
load balancer 22, 311
Locality Sensitive Hashing

(LSH) 380
Lock 323
lock 324
log likelihood 266
logarithmic 71
LogicalAttribute 196–197
LogicalDataSet 195
look-to-book ratio 276
low-dimension 241
LowerCaseTokenizer 210, 212
LSH. See Locality Sensitive

Hashing (LSH)
LSI. See latent semantic indexing

(LSI)
Lucene 17, 149, 151, 164, 166,

169, 172, 320–327, 350
architecture 310–311
classes 311–312
core classes 311–312
download 208
finding similar items 355–359
indexing 313, 320
querying 330–331
scoring 327–330
term vector 324–325

Lucene in Action 208, 310
Lucene JDBC 341
Lucene scoring 327–330
LuceneTextAnalyzer 231–235
Luke 339

M

machine learning 176, 240, 342
machine-generated tags 83
mailing list 91
manufacturer 83
MapReduce 146, 164,

169–171, 380
margin 180
marketplace 12, 83
Markov Decision process 363
mass behavior 4
mathematical model 306
mathematics 176

394
MathWorks 370
Matrix 296, 370–371
matrix 295
matrix inversion 299
Meebo 89, 105
memory-based 379
menus 50
message boards 8, 26, 41, 82–86,

91–93, 206
messaging infrastructure 25
messaging server 21–22, 24–25
metadata 46, 51–52, 58–59, 62,

68–69, 80
attribute-based 26
content-based 27
example computation 41–46
from text 93
tagging 50–80
user actions 34–40
user-action-based 27
users and items 26–27

MetaDataExtractor 95
MetaDataVector 94, 98
meta-search 344
microarrays 345
Microsoft 107, 150, 170
mining process 181–182
MiningObject 195–197, 300
Minwise Independent

Permutation Hashing
(MinHash) 380

mirror sites 149, 164
MLP. See multi-layer perceptron

(MLP)
model-based 29, 196, 379
ModelDetail 197
MOR 194
MoreLikeThis 358
movie titles 383
MSN 108, 111, 124,

139–140, 144
MultiFieldQueryParser 318, 333
multi-layer perceptron

(MLP) 275, 297–298
multiple fields query 327
multiple indexes search

312, 327, 335
multiple multiplication factor

model 363
multiple-term tokens 214
MultiSearcher 312, 335
multi-term phrases, detect 95
MultiTermQuery 330
music 17, 354
MyRank 59
MyWeb 59

N

NaïveBayes 281
natural language 345
navigation 50, 83–84

links 51
menus 8

navigenics.com 345
N-dimensional vector 353
nearest neighbor. See k-nearest

neighbor (k-NN)
NearestNeighbourSearch 365
net gain 277
net worth 276, 351
Netflix 29, 350, 381–385
network effect 6
network topologies 373
neural network 29, 178, 274,

295, 297–298, 306
NeuralNetworkModelDetail 197
New York Times 37
news feeds 83
news items 84
news site 379
newsfeed format 110
NextBio 346
Nielsen Net Ratings, search

numbers 309
node 179–180, 259, 276–280,

285–286, 294
nodes, decision tree 179
noisy ratings 379
nominal attributes 177
nonlinear 297–299
Normalize 31
normalizeToken 97
numerical attributes 176
Nutch 146, 149, 151, 164,

167–171, 207, 309, 339
running 165–167
searching with 168–169
setting up 164

O

online analytic processing
(OLAP) 176

ontology 60, 346
open source crawler 164, 339
OPTICS 268
optimizing memory settings 325
Oracle 193–194
OrbiMed Advisors LLC 345
ordinal attributes 176
orthogonal matrix 370
overfitting 182, 298

P

PageRank 59
pandemic 5
ParallelMultiSearcher 312
parent nodes 285
path followed 28
pattern matcher 161, 163
pdf 320
PDFBox 320
Pearson-r correlation

43, 354, 363
Pentaho 182
PerFieldAnalyzerWrapper 212
perpetual deta 11
persistence model 35
personal health history 345
personal journals 83, 87
personalization 349, 362

Google News 377–381
personalized

recommendations 350, 374
Photo 44
photo 82
photos 26, 41–42, 48,

50–52, 80, 84
phrase detection 215–233
phrase dictionary 207
PhraseQuery 330–331
phrases 51, 53–55, 58, 80,

207, 212, 216–218,
221–222, 224, 239

definition 29
detecting 100–102, 214–218

PhrasesCache 215
PhysicalAttribute 196
PhysicalAttributeRole 196
PhysicalDataSet 195–196, 304
pictures 14
pinging 111
Pingoat 111
Pingomatic 111
PLSI. See probabilistic latent

semantic indexing (PLSI)
PMML. See Predictive Model

Markup Language
(PMML) 204

podcasters 107
podcasts 14, 51
polling 25
polls 28, 84, 103
polysemy 54, 80, 369
Porter 99, 210–221
PorterStemFilter 210–214
PorterStemmer 327
PorterStemStopWordAnalyzer

212–214, 219

395
Postami 111
Powerset 345
precision 310
predictive model 274

intelligent search 342
Predictive Model Markup

Language (PMML) 204
predictive models 22, 24, 28, 32,

48, 102
PredictiveApriori 188
PrefixFilter 334
PrefixQuery 330–334
price 83
printClusterEntries 266–267
printer 86
prior history 275
probabilistic 373
probabilistic latent semantic

indexing (PLSI) 363, 380
probabilistic methods 29
probabilistic networks. See Bayes-

ian belief networks (BBM)
probability distribution 281
probability theory 180, 281
products 51, 83
professionally developed

keywords 26
professionally generated 52
profile 352
profile page 84
Profile selections 28
pruneDistances 258–259
purchasing history 375

Q

quadratic regression 294
quality of the item 354
quality of the predictive

model 182
Quantcast 146
Query 312
query results 114
query terms 359
Query. See Lucene
QueryFilter. See Lucene
QueryParser 312
questions and answers 8, 26,

82–83, 103, 206

R

Racofi. See Cofi
radial basis function (RBF)

275, 295, 298–299
RAM 325

RAMDirectory 312
random 250
RangeFilter 334
RangeQuery 330
RapidMiner. See Waikato Envi-

ronment for Knowledge
Analysis (WEKA)

rate 8
ratings 7, 14, 18, 26, 28–29,

35–36, 40–41, 83, 349
example 41–48
persistence model 35

RBF. See radial basis function
(RBF)

RBMs 383
RDF 109
Read A Blog 111
Reader 209
recall 310
RecodApplyTask 200
recommendation 14
recommendation engine 7, 9,

17–18, 21, 24, 37, 41, 102,
349–355

Amazon 374–377
collaborative-based 8
content-based 359–362
high performance 379
Netflix 381–385

recommendation engines 18
recommendation system 29, 238

hybrid 355
large-scale 373

recommendations 8, 39
reference weblogs 89
ReferenceWeblog. See blogs
registration 276
regression 178, 274–275, 362

See also classification
RegressionModel 197–198, 300
RegressionSettings 301
RelevanceTextDataItem 359
remixability 11
response XML, handling 115
result objects,

implementing 117
RetrievedBlogEntry 244
RetrievedBlogHitCollector 357
retrieving content 159–160
review 6, 9, 14
Reviewer 40
reviews 39–41, 46, 83–84
Revver 39
Rich Site Summary (RSS)

59, 108–109, 111, 124,
128–129, 139, 144

integrating providers
with 139–143

parsing 141–143
RSS 2.0 141–143

rich user experience 11
robots.txt 147, 156–158
Rolex watch. See classification
Rollyo 344
RSS. See Rich Site Summary

(RSS) 108
rule induction 178
running

Nutch 165–167
web crawler 162–163

Russian charset 210–211
RussianAnalyzer 212
RussianLetterTokenizer 210
RussianLowerCaseFilter 210
RussianStemFilter 210

S

SaaS. See software-as-a-service
(SaaS)

SAP 193
SAS 194
saving 9, 28
SAX 116, 119–120, 123–124,

126, 144
scaling 21
Scuttle 63–65, 81
search 9, 17, 102

architecture 310–311
base classes 116–127
definition 310

search engine 8, 85, 87, 90, 92,
104, 207, 362

ranking 10, 90, 149
search engines 145, 147, 354

community-based 344
search history 377–378
search index 22, 310

creating 314–317
search parameters 113

implementing 117
search performance

optimization 338
search service 23, 311
search terms 84, 375
Searcher 323, 329, 332
searching

blogosphere 111–116
blogs 111–116
with Nutch 168–169

Searchme 347
segment 315, 320, 325

396
select for update 25
sending messages 206
Service-Oriented Architecture

(SOA) 21
services, definition 21
setBoost 328
setMaxBufferedDocs 325–326
setMaxFieldLength 326
setMergeFactor 325
shopping basket 375
sigmoidal basis functions 299
Silicon Valley 7
similarity 27, 247
similarity computation,

cosine-based 42
similarity matrix 364
similarity metric 353
SimpleAnalyzer 212
SimpleBiTermStop-

WordStemmerMeta-
DataExtractor 100

SimpleContentType 103
SimpleKMeans 268
SimpleMetaDataExtractor 95
SimpleStopWordMetaData-

Extractor 98
SimpleStopWordStemmerMeta-

DataExtractor 99
simulated annealing 180
single neucleotide

polymorphisms (SNP)
single-link 253
single-signons 86
Singleton 323
singular value decomposition

(SVD) 354, 369
sitemaps 150, 172
slop 331
SNP. See singular neucleotide

polymorphisms (SNP)
SOA. See Service-Oriented

Architecture (SOA)
social networking 26, 351
sociology 4
software-as-a-service (SaaS)

39, 334
Solr 324, 339
sorting 327
SpanQuery 330
sparse data 365
sparse matrix 353–354, 370
sparsely populated 32–34, 41,

47, 383
Sphere 111
spider trap 149
Spring 30, 59, 341
Spring bean 323

SPSS 193
spurl.net 36
square matrix 295, 370
Stack. See text analysis
standard data mining API 193
StandardAnalyzer 212
StandardTokenizer 210
stateless 21
statistical 294
statistics 176
stem 207
stemmer analyzers 213
stemming 31, 58, 94, 99–100,

102, 104
definition 29

stickier 8, 10
stochastic simulation 287
stop terms 98
stop words 30, 94, 98–99,

207, 358
removing 98–99

StopAnalyzer 212
Strategy 71
subcategory 50
supervised learning 178, 299
SupervisedAlgorithmSettings

300–303
SupervisedModel 197, 300
SupervisedSettings 301
support vector machine

(SVM) 180, 295
Surowiecki, James 4
SVD. See singular value

decomposition (SVD)
SVDExample 371
SVM. See support vector

machines (SVM) 178
SVMClassificationSettings 303
SVMRegressionSettings 301
sweet spot 351
Synchronous services 21
SynonymPhraseStopWord-

Analyzer 212
SynonymPhraseStopWordFilter

216–218
synonyms 31, 53–55, 58, 207

injecting 214–218
SynonymsCache 215
synonymy 369

T

Tag 221
tag cloud 8, 15, 208

building 57–59, 62, 69
definition 57

TagCloud.com 59
TagCloudElement 71–75, 77–79
tagging 9, 28, 51–56, 60, 62–63,

65–69, 78–79, 342, 349
introduction 51

TagMagnitude 222, 225
TagMagnitudeVector 225, 244,

246, 353
tags 8, 14–15, 18, 207
tan hyperbolic functions 297
Task 195–196
Taste. See collaborative filtering
taxonomyParentId 196
Technorati 108, 111, 124, 128,

131, 134–135, 144, 244–247,
262, 275, 287–290

term frequency (TF)
30, 328, 358

term frequency vector 324
term vector 29, 32, 34, 48, 93,

207, 241, 288, 353, 362
infrastructure 225–231
representation 206

term vectors 30–31, 34
term-frequency 149
TermFreqVector 356–357
TermQuery 330
terms, definition 30
text analysis 206–221, 231,

237–239, 350
infrastructure 221–237

text analytics 359
text analyzers 208

stemmer analyzer 213
text clustering 242–244
text parsing 207
text processing 247, 261
TextAnalyzer 232
TextDataItem 242, 359
The Hundredth Monkey 5
The Long Tail 18, 41
The New Yorker 4
The Wall Street Journal 36
threshold 297
Time 128
Token 209
TokenFilter 214–217
tokenization 31, 94

definition 208
tokenize 207
Tokenizer 209
Tokenizer, European 210
TokenStream 209–214
Tomcat 339
toolkit, text analysis 206
tools 84
top 10 8

397
Top Item List 351
top n recommendation 352, 363
Top Reviewers list 39
TopDocCollector 336–337
TopDocs 336–337
TopFieldDocs 336–337
topical crawlers 149
top-seller lists 374
Toxi 63–65, 81
TP53 346
training process 298
transaction history 23–24, 28
TreeSettings 301

U

UGC. See user-generated content
(UGC)

undirected path 287
University of Waikato 182
unstructured text 25, 27, 30, 40
unsupervised learning

178, 240, 299
URLs, extracting 160–161
user interactions 349, 363
user profile 12, 351
user rating 20, 35, 46
user-based analysis 352–353
user-centric applications

6, 12–14
user-generated content

(UGC) 12, 206, 275, 322
definition 82
tags 26

user-item dataset 363
user-item matrix 364, 369
Userland Software 109
users 26

clustered 9
user-user similarity matrix 363

V

validation window 38
variables 177
vector 27, 30–34, 43, 46–48

space model 30, 327
videos 23, 33, 51–52, 80, 82, 103,

107, 354
content type 84, 102

dataset 33
example analysis 41
integration architecture 23
metadata 26
Revver 39
tagging 14
YouTube 5, 33

viral 5, 7
viral marketing 36
Vista 107
VisualizeTagCloudDecorator

76–77, 79
vocabulary 51–53, 60, 80
Volinsky, Chris 381
voting 9, 15, 28, 35, 41, 46

W

Waikato Environment for Knowl-
edge Analysis (WEKA) 175,
182–193, 241, 262–268, 275,
281, 287–288, 290, 292–296,
299–300, 306, 366, 370

APIs 186–193
installation 186
tutorial 183–185

watches 279
Web 2.0 6, 10–11, 14, 19, 39, 62
web 2.0 289
Web 3.0 9, 11, 19
web application 3, 20
web applications 3
web crawler 146, 149–152,

157, 163
building 152–164
running 162–163

web crawling 22, 82,
145–152, 342

deep 150
process 147–149
why 146

web server 24
web spiders 146
Web2.0 94, 106
WEKA APIs 186–193
WEKA. See Waikato Environment

for Knowledge Analysis
(WEKA) 275

weka.associations 188
weka.attributeselection 188

weka.classifier 187
weka.clusterer 187
weka.core 186
weka.filters 188
WEKABlogClassifier

287, 292, 300
WEKABlogDataSetClusterer

262
WEKABlogPredictor 288, 299
WEKAPredictiveBlogDataSet-

CreatorImpl 287
White, Tim 164
WhitespaceAnalyzer 212
WhitespaceTokenizer 210
Wiki 89–90, 105
Wikipedia 89–90, 106, 152, 162,

164–165, 169
wikis 8–9, 18, 83–84, 86,

89–92, 104
WildCardQuery 331
window of terms 215
Winer, Dave 109
Wisdom of the Crowds 4
word frequency 7
works 298
worksheets 84
world wide web 145
write lock 324

X

XML response, parsing 123–126

Y

Yahoo 56, 58–59
blog 111
music 17

YALE. See Yet Another Learning
Environment (YALE)

Yet Another Learning Environ-
ment (YALE) 183

YouTube 5, 33

Z

ZoomCloud 59
Zopto 111

	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Author Online
	About the author
	About the title
	About the cover illustration
	Gathering data for intelligence
	Understanding collective intelligence
	1.1 What is collective intelligence?
	1.2 CI in web applications
	1.2.1 Collective intelligence from the ground up: a sample application
	1.2.2 Benefits of collective intelligence
	1.2.3 CI is the core component of Web 2.0
	1.2.4 Harnessing CI to transform from content-centric to user-centric applications

	1.3 Classifying intelligence
	1.3.1 Explicit intelligence
	1.3.2 Implicit intelligence
	1.3.3 Derived intelligence

	1.4 Summary
	1.5 Resources

	Learning from user interactions
	2.1 Architecture for applying intelligence
	2.1.1 Synchronous and asynchronous services
	2.1.2 Real-time learning in an event-driven system
	2.1.3 Polling services for non–event-driven systems
	2.1.4 Advantages and disadvantages of event-based and non–event-based architectures

	2.2 Basics of algorithms for applying CI
	2.2.1 Users and items
	2.2.2 Representing user information
	2.2.3 Content-based analysis and collaborative filtering
	2.2.4 Representing intelligence from unstructured text
	2.2.5 Computing similarities
	2.2.6 Types of datasets

	2.3 Forms of user interaction
	2.3.1 Rating and voting
	2.3.2 Emailing or forwarding a link
	2.3.3 Bookmarking and saving
	2.3.4 Purchasing items
	2.3.5 Click-stream
	2.3.6 Reviews

	2.4 Converting user interaction into collective intelligence
	2.4.1 Intelligence from ratings via an example
	2.4.2 Intelligence from bookmarking, saving, purchasing Items, forwarding, click-stream, and reviews

	2.5 Summary
	2.6 Resources

	Extracting intelligence from tags
	3.1 Introduction to tagging
	3.1.1 Tag-related metadata for users and items
	3.1.2 Professionally generated tags
	3.1.3 User-generated tags
	3.1.4 Machine-generated tags
	3.1.5 Tips on tagging
	3.1.6 Why do users tag?

	3.2 How to leverage tags
	3.2.1 Building dynamic navigation
	3.2.2 Innovative uses of tag clouds
	3.2.3 Targeted search
	3.2.4 Folksonomies and building a dictionary

	3.3 Extracting intelligence from user tagging: an example
	3.3.1 Items related to other items
	3.3.2 Items of interest for a user
	3.3.3 Relevant users for an item

	3.4 Scalable persistence architecture for tagging
	3.4.1 Reviewing other approaches
	3.4.2 Recommended persistence architecture

	3.5 Building tag clouds
	3.5.1 Persistence design for tag clouds
	3.5.2 Algorithm for building a tag cloud
	3.5.3 Implementing a tag cloud
	3.5.4 Visualizing a tag cloud

	3.6 Finding similar tags
	3.7 Summary
	3.8 Resources

	Extracting intelligence from content
	4.1 Content types and integration
	4.1.1 Classifying content
	4.1.2 Architecture for integrating content

	4.2 The main CI-related content types
	4.2.1 Blogs
	4.2.2 Wikis
	4.2.3 Groups and message boards

	4.3 Extracting intelligence step by step
	4.3.1 Setting up the example
	4.3.2 Naïve analysis
	4.3.3 Removing common words
	4.3.4 Stemming
	4.3.5 Detecting phrases

	4.4 Simple and composite content types
	4.5 Summary
	4.6 Resources

	Searching the blogosphere
	5.1 Introducing the blogosphere
	5.1.1 Leveraging the blogosphere
	5.1.2 RSS: the publishing format
	5.1.3 Blog-tracking companies

	5.2 Building a framework to search the blogosphere
	5.2.1 The searcher
	5.2.2 The search parameters
	5.2.3 The query results
	5.2.4 Handling the XML response
	5.2.5 Exception handling

	5.3 Implementing the base classes
	5.3.1 Implementing the search parameters
	5.3.2 Implementing the result objects
	5.3.3 Implementing the searcher
	5.3.4 Parsing XML response
	5.3.5 Extending the framework

	5.4 Integrating Technorati
	5.4.1 Technorati search API overview
	5.4.2 Implementing classes for integrating Technorati

	5.5 Integrating Bloglines
	5.5.1 Bloglines search API overview
	5.5.2 Implementing classes for integrating Bloglines

	5.6 Integrating providers using RSS
	5.6.1 Generalizing the query parameters
	5.6.2 Generalizing the blog searcher
	5.6.3 Building the RSS 2.0 XML parser

	5.7 Summary
	5.8 Resources

	Intelligent web crawling
	6.1 Introducing web crawling
	6.1.1 Why crawl the Web?
	6.1.2 The crawling process
	6.1.3 Intelligent crawling and focused crawling
	6.1.4 Deep crawling
	6.1.5 Available crawlers

	6.2 Building an intelligent crawler step by step
	6.2.1 Implementing the core algorithm
	6.2.2 Being polite: following the robots.txt file
	6.2.3 Retrieving the content
	6.2.4 Extracting URLs
	6.2.5 Making the crawler intelligent
	6.2.6 Running the crawler
	6.2.7 Extending the crawler

	6.3 Scalable crawling with Nutch
	6.3.1 Setting up Nutch
	6.3.2 Running the Nutch crawler
	6.3.3 Searching with Nutch
	6.3.4 Apache Hadoop, MapReduce, and Dryad

	6.4 Summary
	6.5 Resources

	Deriving intelligence
	Data mining: process, toolkits, and standards
	7.1 Core concepts of data mining
	7.1.1 Attributes
	7.1.2 Supervised and unsupervised learning
	7.1.3 Key learning algorithms
	7.1.4 The mining process

	7.2 Using an open source data mining framework: WEKA
	7.2.1 Using the WEKA application: a step-by-step tutorial
	7.2.2 Understanding the WEKA APIs
	7.2.3 Using the WEKA APIs via an example

	7.3 Standard data mining API: Java Data Mining (JDM)
	7.3.1 JDM architecture
	7.3.2 Key JDM objects
	7.3.3 Representing the dataset
	7.3.4 Learning models
	7.3.5 Algorithm settings
	7.3.6 JDM tasks
	7.3.7 JDM connection
	7.3.8 Sample code for accessing DME
	7.3.9 JDM models and PMML

	7.4 Summary
	7.5 Resources

	Building a text analysis toolkit
	8.1 Building the text analyzers
	8.1.1 Leveraging Lucene
	8.1.2 Writing a stemmer analyzer
	8.1.3 Writing a TokenFilter to inject synonyms and detect phrases
	8.1.4 Writing an analyzer to inject synonyms and detect phrases
	8.1.5 Putting our analyzers to work

	8.2 Building the text analysis infrastructure
	8.2.1 Building the tag infrastructure
	8.2.2 Building the term vector infrastructure
	8.2.3 Building the Text Analyzer class
	8.2.4 Applying the text analysis infrastructure

	8.3 Use cases for applying the framework
	8.4 Summary
	8.5 Resources

	Discovering patterns with clustering
	9.1 Clustering blog entries
	9.1.1 Defining the text clustering infrastructure
	9.1.2 Retrieving blog entries from Technorati
	9.1.3 Implementing the k-means algorithms for text processing
	9.1.4 Implementing hierarchical clustering algorithms for text processing
	9.1.5 Expectation maximization and other examples of clustering high-dimension sparse data

	9.2 Leveraging WEKA for clustering
	9.2.1 Creating the learning dataset
	9.2.2 Creating the clusterer
	9.2.3 Evaluating the clustering results

	9.3 Clustering using the JDM APIs
	9.3.1 Key JDM clustering-related classes
	9.3.2 Clustering settings using the JDM APIs
	9.3.3 Creating the clustering task using the JDM APIs
	9.3.4 Executing the clustering task using the JDM APIs
	9.3.5 Retrieving the clustering model using the JDM APIs

	9.4 Summary
	9.5 Resources

	Making predictions
	10.1 Classification fundamentals
	10.1.1 Learning decision trees by example
	10.1.2 Naïve Bayes’ classifier
	10.1.3 Belief networks

	10.2 Classifying blog entries using WEKA APIs
	10.2.1 Building the dataset for classifying blog entries
	10.2.2 Building the classifier class

	10.3 Regression fundamentals
	10.3.1 Linear regression
	10.3.2 Multi-layer perceptron (MLP)
	10.3.3 Radial basis functions (RBF)

	10.4 Regression using WEKA
	10.5 Classification and regression using JDM
	10.5.1 Key JDM supervised learning–related classes
	10.5.2 Supervised learning settings using the JDM APIs
	10.5.3 Creating the classification task using the JDM APIs
	10.5.4 Executing the classification task using the JDM APIs
	10.5.5 Retrieving the classification model using the JDM APIs
	10.5.6 Retrieving the classification model using the JDM APIs

	10.6 Summary
	10.7 Resources

	Applying intelligence in your application
	Intelligent search
	11.1 Search fundamentals
	11.1.1 Search architecture
	11.1.2 Core Lucene classes
	11.1.3 Basic indexing and searching via example

	11.2 Indexing with Lucene
	11.2.1 Understanding the index format
	11.2.2 Modifying the index
	11.2.3 Incremental indexing
	11.2.4 Accessing the term frequency vector
	11.2.5 Optimizing indexing performance

	11.3 Searching with Lucene
	11.3.1 Understanding Lucene scoring
	11.3.2 Querying Lucene
	11.3.3 Sorting search results
	11.3.4 Querying on multiple fields
	11.3.5 Filtering
	11.3.6 Searching multiple indexes
	11.3.7 Using a HitCollector
	11.3.8 Optimizing search performance

	11.4 Useful tools and frameworks
	11.4.1 Luke
	11.4.2 Solr
	11.4.3 Compass
	11.4.4 Hibernate search

	11.5 Approaches to intelligent search
	11.5.1 Augmenting search with classifiers and predictors
	11.5.2 Clustering search results
	11.5.3 Personalizing results for the user
	11.5.4 Community-based search
	11.5.5 Linguistic-based search
	11.5.6 Data search

	11.6 Summary
	11.7 Resources

	Building a recommendation engine
	12.1 Recommendation engine fundamentals
	12.1.1 Introducing the recommendation engine
	12.1.2 Item-based and user-based analysis
	12.1.3 Computing similarity using content-based and collaborative techniques
	12.1.4 Comparison of content-based and collaborative techniques

	12.2 Content-based analysis
	12.2.1 Finding similar items using a search engine (Lucene)
	12.2.2 Building a content-based recommendation engine
	12.2.3 Related items for document clusters
	12.2.4 Personalizing content for a user

	12.3 Collaborative filtering
	12.3.1 k-nearest neighbor
	12.3.2 Packages for implementing collaborative filtering
	12.3.3 Dimensionality reduction with latent semantic indexing
	12.3.4 Implementing dimensionality reduction
	12.3.5 Probabilistic model–based approach

	12.4 Real-world solutions
	12.4.1 Amazon item-to-item recommendation
	12.4.2 Google News personalization
	12.4.3 Netflix and the BellKor Solution for the Netflix Prize

	12.5 Summary
	12.6 Resources

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

